IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v3y1985i4p175-184.html
   My bibliography  Save this article

On upper bounds for the variance of functions of random variables

Author

Listed:
  • Cacoullos, T.
  • Papathanasiou, V.

Abstract

The upper bounds for the variance of a function g of a random variable X obtained in Cacoullos (1982) (for short CP) are improved in the case [mu] = E(X) [not equal to] 0. A main feature of these bounds is that they involve the second moment of the derivative or the difference of g. A multivariate extension for functions of independent random variables is also given.

Suggested Citation

  • Cacoullos, T. & Papathanasiou, V., 1985. "On upper bounds for the variance of functions of random variables," Statistics & Probability Letters, Elsevier, vol. 3(4), pages 175-184, July.
  • Handle: RePEc:eee:stapro:v:3:y:1985:i:4:p:175-184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(85)90014-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salinelli, Ernesto, 2009. "Nonlinear principal components, II: Characterization of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 652-660, April.
    2. V. Papathanasiou, 1995. "A characterization of the Pearson system of distributions and the associated orthogonal polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(1), pages 171-176, January.
    3. Goodarzi, F. & Amini, M. & Mohtashami Borzadaran, G.R., 2016. "On upper bounds for the variance of functions of the inactivity time," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 62-71.
    4. Giorgos Afendras & Vassilis Papathanasiou, 2014. "A note on a variance bound for the multinomial and the negative multinomial distribution," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(3), pages 179-183, April.
    5. Mohtashami Borzadaran, G. R. & Shanbhag, D. N., 1998. "Further results based on Chernoff-type inequalities," Statistics & Probability Letters, Elsevier, vol. 39(2), pages 109-117, August.
    6. Papadatos, N. & Papathanasiou, V., 1996. "A generalization of variance bounds," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 191-194, June.
    7. Balakrishnan, N. & Cramer, E. & Kamps, U., 2001. "Bounds for means and variances of progressive type II censored order statistics," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 301-315, October.
    8. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    9. Giorgos Afendras, 2013. "Unified extension of variance bounds for integrated Pearson family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 687-702, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:3:y:1985:i:4:p:175-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.