IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v39y1998i2p109-117.html
   My bibliography  Save this article

Further results based on Chernoff-type inequalities

Author

Listed:
  • Mohtashami Borzadaran, G. R.
  • Shanbhag, D. N.

Abstract

In this paper, we address questions dealing with characterizations based on Chernoff-type moment inequalities and their variants and establish, via the approach of Alharbi and Shanbhag [(1996) J. Statist. Plann. Inference 55, 139-150], general theorems extending, among others, various results of Cacoullos and Papathanasiou [(1995), Math. Meth. Statist. 4, 106-113; (1997), J. Statist. Plann. Inference 63, 157-171].

Suggested Citation

  • Mohtashami Borzadaran, G. R. & Shanbhag, D. N., 1998. "Further results based on Chernoff-type inequalities," Statistics & Probability Letters, Elsevier, vol. 39(2), pages 109-117, August.
  • Handle: RePEc:eee:stapro:v:39:y:1998:i:2:p:109-117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00036-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prakasa Rao, B. L. S. & Sreehari, M., 1986. "Another characterization of multivariate normal distribution," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 209-210, June.
    2. Cacoullos, T. & Papathanasiou, V., 1992. "Lower variance bounds and a new proof of the central limit theorem," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 173-184, November.
    3. R. Korwar, 1991. "On characterizations of distributions by mean absolute deviation and variance bounds," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(2), pages 287-295, June.
    4. Cacoullos, T. & Papathanasiou, V., 1985. "On upper bounds for the variance of functions of random variables," Statistics & Probability Letters, Elsevier, vol. 3(4), pages 175-184, July.
    5. Deo Kumar, Srivastava & Sreehari, M., 1987. "Characterization of a family of discrete distributions via a chernoff type inequality," Statistics & Probability Letters, Elsevier, vol. 5(4), pages 293-294, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Nair & K. Sudheesh, 2008. "Some results on lower variance bounds useful in reliability modeling and estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 591-603, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Nair & K. Sudheesh, 2008. "Some results on lower variance bounds useful in reliability modeling and estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 591-603, September.
    2. Giorgos Afendras, 2013. "Unified extension of variance bounds for integrated Pearson family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 687-702, August.
    3. Giorgos Afendras & Vassilis Papathanasiou, 2014. "A note on a variance bound for the multinomial and the negative multinomial distribution," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(3), pages 179-183, April.
    4. Salinelli, Ernesto, 2009. "Nonlinear principal components, II: Characterization of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 652-660, April.
    5. Papadatos, N. & Papathanasiou, V., 1996. "A generalization of variance bounds," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 191-194, June.
    6. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    7. Mikami, Toshio, 2004. "Covariance kernel and the central limit theorem in the total variation distance," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 257-268, August.
    8. Goodarzi, F. & Amini, M. & Mohtashami Borzadaran, G.R., 2016. "On upper bounds for the variance of functions of the inactivity time," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 62-71.
    9. Papadatos, N. & Papathanasiou, V., 1998. "Variational Inequalities for Arbitrary Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 154-168, November.
    10. Balakrishnan, N. & Cramer, E. & Kamps, U., 2001. "Bounds for means and variances of progressive type II censored order statistics," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 301-315, October.
    11. V. Papathanasiou, 1995. "A characterization of the Pearson system of distributions and the associated orthogonal polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(1), pages 171-176, January.
    12. Bobkov, S. G. & Houdré, C., 1997. "Converse Poincaré-type inequalities for convex functions," Statistics & Probability Letters, Elsevier, vol. 34(1), pages 37-42, May.
    13. Christophe Ley & Gesine Reinert & Yvik Swan, 2014. "Approximate Computation of Expectations: the Canonical Stein Operator," Working Papers ECARES ECARES 2014-36, ULB -- Universite Libre de Bruxelles.
    14. Aldo Goia & Ernesto Salinelli & Pascal Sarda, 2011. "Exploring the statistical applicability of the Poincaré inequality: a test of normality," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 334-352, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:39:y:1998:i:2:p:109-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.