IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v39y1998i2p119-122.html
   My bibliography  Save this article

Simple tests for the validity of correlation function models on the circle

Author

Listed:
  • Gneiting, Tilmann

Abstract

We present two simple and efficient tests for the positive definiteness of a given function on the circle. The first criterion is an analogue of Pólya's theorem, and the second is a necessary condition in terms of derivatives. Some hints at applications in geostatistics are given as well.

Suggested Citation

  • Gneiting, Tilmann, 1998. "Simple tests for the validity of correlation function models on the circle," Statistics & Probability Letters, Elsevier, vol. 39(2), pages 119-122, August.
  • Handle: RePEc:eee:stapro:v:39:y:1998:i:2:p:119-122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00042-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wood, Andrew T. A., 1995. "When is a truncated covariance function on the line a covariance function on the circle?," Statistics & Probability Letters, Elsevier, vol. 24(2), pages 157-164, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter F. Craigmile, 2003. "Simulating a class of stationary Gaussian processes using the Davies–Harte algorithm, with application to long memory processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(5), pages 505-511, September.
    2. Huang, Chunfeng & Zhang, Haimeng & Robeson, Scott M., 2016. "Intrinsic random functions and universal kriging on the circle," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 33-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chunfeng & Li, Ao, 2021. "On Lévy’s Brownian motion and white noise space on the circle," Statistics & Probability Letters, Elsevier, vol. 171(C).
    2. Huang, Chunfeng & Zhang, Haimeng & Robeson, Scott M., 2016. "Intrinsic random functions and universal kriging on the circle," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 33-39.
    3. Huang, Chunfeng & Zhang, Haimeng & Robeson, Scott M., 2012. "A simplified representation of the covariance structure of axially symmetric processes on the sphere," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1346-1351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:39:y:1998:i:2:p:119-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.