IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v22y1995i4p333-338.html
   My bibliography  Save this article

Rates of convergence for everywhere-positive Markov chains

Author

Listed:
  • Baxter, J. R.
  • Rosenthal, Jeffrey S.

Abstract

We generalize and simplify a result of Schervish and Carlin (1992) concerning the convergence of Markov chains to their stationary distributions. We prove geometric convergence for any Markov chain whose transition operator is compact and has everywhere-positive density functions (with respect to some reference measure). We also provide, without requiring compactness, a quantitative estimate of the convergence rate, given in terms of the stationary distribution.

Suggested Citation

  • Baxter, J. R. & Rosenthal, Jeffrey S., 1995. "Rates of convergence for everywhere-positive Markov chains," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 333-338, March.
  • Handle: RePEc:eee:stapro:v:22:y:1995:i:4:p:333-338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(94)00085-M
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mandel, Antoine & Veetil, Vipin P., 2021. "Monetary dynamics in a network economy," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    2. Yuen, Wai Kong, 2000. "Applications of geometric bounds to the convergence rate of Markov chains on," Stochastic Processes and their Applications, Elsevier, vol. 87(1), pages 1-23, May.
    3. Lukka Tuomas J. & Kujala Janne V., 2002. "Using Genetic Operators to Speed up Markov Chain Monte Carlo Integration," Monte Carlo Methods and Applications, De Gruyter, vol. 8(1), pages 51-72, December.
    4. Claudio Asci, 2009. "Generating Uniform Random Vectors in Z p k : The General Case," Journal of Theoretical Probability, Springer, vol. 22(3), pages 791-809, September.
    5. Nielsen, Adam, 2016. "The Monte Carlo computation error of transition probabilities," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 163-170.
    6. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    7. Hernández-Lerma, Onésimo & Lasserre, Jean B., 1996. "Existence of bounded invariant probability densities for Markov chains," Statistics & Probability Letters, Elsevier, vol. 28(4), pages 359-366, August.
    8. Rosenthal, Jeffrey S., 1996. "Markov chain convergence: From finite to infinite," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 55-72, March.
    9. Claudio Asci, 2001. "Generating Uniform Random Vectors," Journal of Theoretical Probability, Springer, vol. 14(2), pages 333-356, April.
    10. Anton Molyboha & Michael Zabarankin, 2011. "Optimization of steerable sensor network for threat detection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(6), pages 564-577, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:22:y:1995:i:4:p:333-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.