IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v118y2016icp163-170.html
   My bibliography  Save this article

The Monte Carlo computation error of transition probabilities

Author

Listed:
  • Nielsen, Adam

Abstract

In many applications one is interested to compute transition probabilities of a Markov chain. This can be achieved by using Monte Carlo methods with local or global sampling points. In this article, we analyze the error by the difference in the L2 norm between the true transition probabilities and the approximation achieved through a Monte Carlo method. We give a formula for the error for Markov chains with locally computed sampling points. Further, in the case of reversible Markov chains, we will deduce a formula for the error when sampling points are computed globally. We will see that in both cases the error itself can be approximated with Monte Carlo methods. As a consequence of the result, we will derive surprising properties of reversible Markov chains.

Suggested Citation

  • Nielsen, Adam, 2016. "The Monte Carlo computation error of transition probabilities," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 163-170.
  • Handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:163-170
    DOI: 10.1016/j.spl.2016.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216300931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baxter, J. R. & Rosenthal, Jeffrey S., 1995. "Rates of convergence for everywhere-positive Markov chains," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 333-338, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Cheng & Teng, Da & Chen, Jun-Yu & Fei, Cheng-Wei & Keshtegar, Behrooz, 2023. "Adaptive vectorial surrogate modeling framework for multi-objective reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukka Tuomas J. & Kujala Janne V., 2002. "Using Genetic Operators to Speed up Markov Chain Monte Carlo Integration," Monte Carlo Methods and Applications, De Gruyter, vol. 8(1), pages 51-72, December.
    2. Mandel, Antoine & Veetil, Vipin P., 2021. "Monetary dynamics in a network economy," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    3. Claudio Asci, 2009. "Generating Uniform Random Vectors in Z p k : The General Case," Journal of Theoretical Probability, Springer, vol. 22(3), pages 791-809, September.
    4. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    5. Hernández-Lerma, Onésimo & Lasserre, Jean B., 1996. "Existence of bounded invariant probability densities for Markov chains," Statistics & Probability Letters, Elsevier, vol. 28(4), pages 359-366, August.
    6. Rosenthal, Jeffrey S., 1996. "Markov chain convergence: From finite to infinite," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 55-72, March.
    7. Yuen, Wai Kong, 2000. "Applications of geometric bounds to the convergence rate of Markov chains on," Stochastic Processes and their Applications, Elsevier, vol. 87(1), pages 1-23, May.
    8. Claudio Asci, 2001. "Generating Uniform Random Vectors," Journal of Theoretical Probability, Springer, vol. 14(2), pages 333-356, April.
    9. Anton Molyboha & Michael Zabarankin, 2011. "Optimization of steerable sensor network for threat detection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(6), pages 564-577, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:163-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.