IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v213y2024ics0167715224001561.html
   My bibliography  Save this article

Instrument-residual estimator for multi-valued instruments under full monotonicity

Author

Listed:
  • Kim, Bora
  • Lee, Myoung-jae

Abstract

In determining the effects of a binary treatment D on an outcome Y, a multi-valued instrumental variable (IV) Z=0,1,…,J often appears. Imbens and Angrist (1994, Econometrica) showed that the IV estimator (IVE) of Y on D using Z as an IV is consistent for a non-negatively weighted average of heterogeneous “complier” effects. However, Imbens and Angrist did not include covariates X. This paper generalizes their finding by explicitly allowing X to appear in the linear model for the IVE, and shows that the extra condition E(Z|X)=L(Z|X) is necessary for generalization, where L(Z|X)≡E(ZX′){E(XX′)}−1X is the linear projection. This paper therefore proposes an alternative IVE using Z−E(Z|X) as an IV, which is consistent for the same estimand without the restrictive extra condition. A simulation study demonstrates that the extra condition E(Z|X)=L(Z|X) is necessary for the usual IVE, but not for the alternative IVE proposed in this paper.

Suggested Citation

  • Kim, Bora & Lee, Myoung-jae, 2024. "Instrument-residual estimator for multi-valued instruments under full monotonicity," Statistics & Probability Letters, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:stapro:v:213:y:2024:i:c:s0167715224001561
    DOI: 10.1016/j.spl.2024.110187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224001561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Myoung-Jae Lee, 2018. "Simple least squares estimator for treatment effects using propensity score residuals," Biometrika, Biometrika Trust, vol. 105(1), pages 149-164.
    3. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    6. Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
    7. Joshua D. Angrist, 1998. "Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military Applicants," Econometrica, Econometric Society, vol. 66(2), pages 249-288, March.
    8. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    9. Myoung-jae Lee & Chirok Han, 2024. "Ordinary least squares and instrumental-variables estimators for any outcome and heterogeneity," Stata Journal, StataCorp LP, vol. 24(1), pages 72-92, March.
    10. Jin‐young Choi & Myoung‐jae Lee, 2012. "Bounding endogenous regressor coefficients using moment inequalities and generalized instruments," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(2), pages 161-182, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    2. Vira Semenova, 2020. "Generalized Lee Bounds," Papers 2008.12720, arXiv.org, revised Feb 2023.
    3. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    4. Choi, Jin-young & Lee, Goeun & Lee, Myoung-jae, 2023. "Endogenous treatment effect for any response conditional on control propensity score," Statistics & Probability Letters, Elsevier, vol. 196(C).
    5. Alvarez, Luis A.F. & Toneto, Rodrigo, 2024. "The interpretation of 2SLS with a continuous instrument: A weighted LATE representation," Economics Letters, Elsevier, vol. 237(C).
    6. Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
    7. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    8. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    9. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    10. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    11. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    12. Tom Boot & Didier Nibbering, 2024. "Inference on LATEs with covariates," Papers 2402.12607, arXiv.org, revised Nov 2024.
    13. Luis Antonio Fantozzi Alvarez & Rodrigo Toneto, 2024. "The interpretation of 2SLS with a continuous instrument: a weighted LATE representation," Working Papers, Department of Economics 2024_11, University of São Paulo (FEA-USP).
    14. Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2024. "Contamination Bias in Linear Regressions," American Economic Review, American Economic Association, vol. 114(12), pages 4015-4051, December.
    15. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    16. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    17. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    18. Abadie, Alberto & Gu, Jiaying & Shen, Shu, 2024. "Instrumental variable estimation with first-stage heterogeneity," Journal of Econometrics, Elsevier, vol. 240(2).
    19. Myoung-jae Lee & Sanghyeok Lee, 2021. "Difference in Differences and Ratio in Ratios for Limited Dependent Variables," Papers 2111.12948, arXiv.org, revised Aug 2023.
    20. Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org, revised Apr 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:213:y:2024:i:c:s0167715224001561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.