IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v193y2023ics0167715222002334.html
   My bibliography  Save this article

Analysis of distance matrices

Author

Listed:
  • Modarres, Reza

Abstract

The relationships between eigenvalues of the distance matrices and outliers are largely unexplored. We show a discrepancy in the sizes of eigenvalues of the distance matrix that is contaminated with outliers. We present test statistics to determine when a distance matrix has a constant structure. We relate the eigenvalues of the two-sample distance matrix to the tests of equality of distributions, study dissimilarity matrices and their eigenvalues in high dimensional and low sample size setting.

Suggested Citation

  • Modarres, Reza, 2023. "Analysis of distance matrices," Statistics & Probability Letters, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:stapro:v:193:y:2023:i:c:s0167715222002334
    DOI: 10.1016/j.spl.2022.109720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222002334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & J. S. Marron & Amnon Neeman, 2005. "Geometric representation of high dimension, low sample size data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 427-444, June.
    2. Jun Li, 2018. "Asymptotic normality of interpoint distances for high-dimensional data with applications to the two-sample problem," Biometrika, Biometrika Trust, vol. 105(3), pages 529-546.
    3. Lingzhe Guo & Reza Modarres, 2019. "Interpoint Distance Classification of High Dimensional Discrete Observations," International Statistical Review, International Statistical Institute, vol. 87(2), pages 191-206, August.
    4. Reza Modarres, 2020. "Graphical Comparison of High‐Dimensional Distributions," International Statistical Review, International Statistical Institute, vol. 88(3), pages 698-714, December.
    5. Reza Modarres, 2022. "Nonparametric tests for detection of high dimensional outliers," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 34(1), pages 206-227, January.
    6. Marco Marozzi & Amitava Mukherjee & Jan Kalina, 2020. "Interpoint distance tests for high-dimensional comparison studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(4), pages 653-665, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Modarres, Reza, 2022. "A high dimensional dissimilarity measure," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    2. Reza Modarres, 2024. "Hotelling $$T^2$$ T 2 test in high dimensions with application to Wilks outlier method," Statistical Papers, Springer, vol. 65(8), pages 5203-5218, October.
    3. Paul, Biplab & De, Shyamal K. & Ghosh, Anil K., 2022. "Some clustering-based exact distribution-free k-sample tests applicable to high dimension, low sample size data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    4. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    5. Jung, Sungkyu & Sen, Arusharka & Marron, J.S., 2012. "Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 190-203.
    6. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    7. Kazuyoshi Yata & Makoto Aoshima, 2012. "Inference on High-Dimensional Mean Vectors with Fewer Observations Than the Dimension," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 459-476, September.
    8. Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
    9. Yugo Nakayama & Kazuyoshi Yata & Makoto Aoshima, 2020. "Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1257-1286, October.
    10. Bar, Haim & Wells, Martin T., 2023. "On graphical models and convex geometry," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    11. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    12. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    13. Matthieu Stigler & Apratim Dey & Andrew Hobbs & David Lobell, 2022. "With big data come big problems: pitfalls in measuring basis risk for crop index insurance," Papers 2209.14611, arXiv.org.
    14. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.
    15. Shin-ichi Tsukada, 2019. "High dimensional two-sample test based on the inter-point distance," Computational Statistics, Springer, vol. 34(2), pages 599-615, June.
    16. Patrick K. Kimes & Yufeng Liu & David Neil Hayes & James Stephen Marron, 2017. "Statistical significance for hierarchical clustering," Biometrics, The International Biometric Society, vol. 73(3), pages 811-821, September.
    17. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    18. Fionn Murtagh, 2009. "The Remarkable Simplicity of Very High Dimensional Data: Application of Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 26(3), pages 249-277, December.
    19. Mao, Guangyu, 2015. "A note on testing complete independence for high dimensional data," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 82-85.
    20. Borysov, Petro & Hannig, Jan & Marron, J.S., 2014. "Asymptotics of hierarchical clustering for growing dimension," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 465-479.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:193:y:2023:i:c:s0167715222002334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.