IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v184y2022ics0167715222000049.html
   My bibliography  Save this article

On Itô’s formula for semimartingales with jumps and non-C2 functions

Author

Listed:
  • Eisenberg, Julia
  • Krühner, Paul

Abstract

This paper considers a variant of Itô’s formula for discontinuous semimartingales and non-C2 functions. This result is particularly helpful for insurance control problems with Markov-modulated components. An example of a dividend barrier strategy for a Brownian risk model with Markov-switching illustrates the result.

Suggested Citation

  • Eisenberg, Julia & Krühner, Paul, 2022. "On Itô’s formula for semimartingales with jumps and non-C2 functions," Statistics & Probability Letters, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000049
    DOI: 10.1016/j.spl.2022.109369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brinker, Leonie Violetta & Eisenberg, Julia, 2021. "Dividend optimisation: A behaviouristic approach," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 202-224.
    2. Eisenberg, Julia & Krühner, Paul, 2018. "The impact of negative interest rates on optimal capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 1-10.
    3. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    4. Jacka, Saul D. & Ocejo, Adriana, 2018. "On the regularity of American options with regime-switching uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 803-818.
    5. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren'e Aid & Matteo Basei & Giorgio Ferrari, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Papers 2305.00541, arXiv.org.
    2. Aïd, René & Basei, Matteo & Ferrari, Giorgio, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Center for Mathematical Economics Working Papers 679, Center for Mathematical Economics, Bielefeld University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brinker, Leonie Violetta & Eisenberg, Julia, 2021. "Dividend optimisation: A behaviouristic approach," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 202-224.
    2. Gunther Leobacher & Michaela Szolgyenyi & Stefan Thonhauser, 2016. "Bayesian Dividend Optimization and Finite Time Ruin Probabilities," Papers 1602.04660, arXiv.org.
    3. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    4. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2022. "Optimal dividends under Markov-modulated bankruptcy level," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 146-172.
    5. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    6. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    7. Igor G. Pospelov & Stanislav A. Radionov, 2015. "Optimal Dividend Policy When Cash Surplus Follows The Telegraph Process," HSE Working papers WP BRP 48/FE/2015, National Research University Higher School of Economics.
    8. Julia Eisenberg & Yuliya Mishura, 2020. "Optimising dividends and consumption under an exponential CIR as a discount factor," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 285-309, October.
    9. Jiang, Zhengjun, 2019. "Optimal dividend policy when risk reserves follow a jump–diffusion process with a completely monotone jump density under Markov-regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 1-7.
    10. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    11. Szölgyenyi Michaela, 2015. "Dividend maximization in a hidden Markov switching model," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 143-158, December.
    12. Eisenberg, Julia & Fabrykowski, Lukas & Schmeck, Maren Diane, 2021. "Optimal Surplus-dependent Reinsurance under Regime-Switching in a Brownian Risk Model," Center for Mathematical Economics Working Papers 648, Center for Mathematical Economics, Bielefeld University.
    13. Julia Eisenberg & Yuliya Mishura, 2018. "An Exponential Cox-Ingersoll-Ross Process as Discounting Factor," Papers 1808.10355, arXiv.org.
    14. Julia Eisenberg & Lukas Fabrykowski & Maren Diane Schmeck, 2021. "Optimal Surplus-Dependent Reinsurance under Regime-Switching in a Brownian Risk Model," Risks, MDPI, vol. 9(4), pages 1-25, April.
    15. Zhu, Jinxia & Chen, Feng, 2013. "Dividend optimization for regime-switching general diffusions," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 439-456.
    16. Michaela Szolgyenyi, 2016. "Dividend maximization in a hidden Markov switching model," Papers 1602.04656, arXiv.org.
    17. Giorgio Ferrari & Patrick Schuhmann & Shihao Zhu, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Papers 2111.03724, arXiv.org, revised Jun 2022.
    18. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Center for Mathematical Economics Working Papers 657, Center for Mathematical Economics, Bielefeld University.
    19. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2020. "Optimal ratcheting of dividends in a Brownian risk model," Papers 2012.10632, arXiv.org.
    20. Jukka Isohätälä & Alistair Milne & Donald Robertson, 2020. "The Net Worth Trap: Investment and Output Dynamics in the Presence of Financing Constraints," Mathematics, MDPI, vol. 8(8), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.