IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i2p439-456.html
   My bibliography  Save this article

Dividend optimization for regime-switching general diffusions

Author

Listed:
  • Zhu, Jinxia
  • Chen, Feng

Abstract

We consider the optimal dividend distribution problem of a financial corporation whose surplus is modeled by a general diffusion process with both the drift and diffusion coefficients depending on the external economic regime as well as the surplus itself through general functions. The aim is to find a dividend payout scheme that maximizes the present value of the total dividends until ruin. We show that, depending on the configuration of the model parameters, there are two exclusive scenarios: (i)the optimal strategy uniquely exists and corresponds to paying out all surpluses in excess of a critical level (barrier) dependent on the economic regime and paying nothing when the surplus is below the critical level;(ii)there are no optimal strategies.

Suggested Citation

  • Zhu, Jinxia & Chen, Feng, 2013. "Dividend optimization for regime-switching general diffusions," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 439-456.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:2:p:439-456
    DOI: 10.1016/j.insmatheco.2013.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713001066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abel Cadenillas & Tahir Choulli & Michael Taksar & Lei Zhang, 2006. "Classical And Impulse Stochastic Control For The Optimization Of The Dividend And Risk Policies Of An Insurance Firm," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 181-202, January.
    2. Abel Cadenillas & Sudipto Sarkar & Fernando Zapatero, 2007. "Optimal Dividend Policy With Mean‐Reverting Cash Reservoir," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 81-109, January.
    3. Cajueiro, Daniel Oliveira & Yoneyama, Takashi, 2004. "Optimal Portfolio and Consumption in a Switching Diffusion Market," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.
    4. Jiaqin Wei & Hailiang Yang & Rongming Wang, 2010. "Classical and Impulse Control for the Optimization of Dividend and Proportional Reinsurance Policies with Regime Switching," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 358-377, November.
    5. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    6. Luz Rocío Sotomayor & Abel Cadenillas, 2009. "Explicit Solutions Of Consumption‐Investment Problems In Financial Markets With Regime Switching," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 251-279, April.
    7. Zhu, Jinxia & Yang, Hailiang, 2008. "Ruin theory for a Markov regime-switching model under a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 311-318, February.
    8. Michael I. Taksar, 2000. "Optimal risk and dividend distribution control models for an insurance company," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(1), pages 1-42, February.
    9. Guo, Xin & Liu, Jun & Zhou, Xun Yu, 2004. "A constrained non-linear regular-singular stochastic control problem, with applications," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 167-187, February.
    10. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.
    11. Luis Alvarez & Jukka Virtanen, 2006. "A class of solvable stochastic dividend optimization problems: on the general impact of flexibility on valuation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 373-398, June.
    12. Nicole Bäuerle, 2004. "Approximation of Optimal Reinsurance and Dividend Payout Policies," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 99-113, January.
    13. Bjarne Højgaard & Michael Taksar, 2001. "Optimal risk control for a large corporation in the presence of returns on investments," Finance and Stochastics, Springer, vol. 5(4), pages 527-547.
    14. He, Lin & Liang, Zongxia, 2009. "Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 88-94, February.
    15. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    16. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szölgyenyi Michaela, 2015. "Dividend maximization in a hidden Markov switching model," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 143-158, December.
    2. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2022. "Optimal dividends under Markov-modulated bankruptcy level," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 146-172.
    3. Michaela Szolgyenyi, 2016. "Dividend maximization in a hidden Markov switching model," Papers 1602.04656, arXiv.org.
    4. Zhu, Jinxia & Siu, Tak Kuen & Yang, Hailiang, 2020. "Singular dividend optimization for a linear diffusion model with time-inconsistent preferences," European Journal of Operational Research, Elsevier, vol. 285(1), pages 66-80.
    5. Jinxia Zhu & Hailiang Yang, 2015. "Optimal financing and dividend distribution in a general diffusion model with regime switching," Papers 1506.08360, arXiv.org.
    6. Giorgio Ferrari & Patrick Schuhmann & Shihao Zhu, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Papers 2111.03724, arXiv.org, revised Jun 2022.
    7. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Center for Mathematical Economics Working Papers 657, Center for Mathematical Economics, Bielefeld University.
    8. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    9. Linlin Tian & Lihua Bai & Junyi Guo, 2020. "Optimal Singular Dividend Problem Under the Sparre Andersen Model," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 603-626, February.
    10. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    11. Jiang, Zhengjun, 2019. "Optimal dividend policy when risk reserves follow a jump–diffusion process with a completely monotone jump density under Markov-regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 1-7.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.
    2. Zhu, Jinxia & Yang, Hailiang, 2016. "Optimal capital injection and dividend distribution for growth restricted diffusion models with bankruptcy," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 259-271.
    3. Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1-2), pages 211-218, January.
    4. He, Lin & Liang, Zongxia, 2008. "Optimal financing and dividend control of the insurance company with proportional reinsurance policy," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 976-983, June.
    5. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2020. "A Perturbation Approach to Optimal Investment, Liability Ratio, and Dividend Strategies," Papers 2012.06703, arXiv.org, revised May 2021.
    6. Jinxia Zhu & Hailiang Yang, 2015. "Optimal financing and dividend distribution in a general diffusion model with regime switching," Papers 1506.08360, arXiv.org.
    7. He, Lin & Hou, Ping & Liang, Zongxia, 2008. "Optimal control of the insurance company with proportional reinsurance policy under solvency constraints," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 474-479, December.
    8. Jiang, Zhengjun, 2019. "Optimal dividend policy when risk reserves follow a jump–diffusion process with a completely monotone jump density under Markov-regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 1-7.
    9. He, Lin & Liang, Zongxia, 2009. "Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 88-94, February.
    10. Peng, Xiaofan & Chen, Mi & Guo, Junyi, 2012. "Optimal dividend and equity issuance problem with proportional and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 576-585.
    11. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    12. Meng, Hui & Siu, Tak Kuen & Yang, Hailiang, 2013. "Optimal dividends with debts and nonlinear insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 110-121.
    13. Liu, Wei & Hu, Yijun, 2014. "Optimal financing and dividend control of the insurance company with excess-of-loss reinsurance policy," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 121-130.
    14. Guan, Huiqi & Liang, Zongxia, 2014. "Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 109-122.
    15. Xiaoxiao Zheng & Xin Zhang, 2014. "Optimal Hybrid Dividend Strategy Under The Markovian Regime-Switching Economy," Papers 1406.7606, arXiv.org.
    16. Zhengjun Jiang & Martijn Pistorius, 2008. "Optimal dividend distribution under Markov-regime switching," Papers 0812.4978, arXiv.org, revised Apr 2011.
    17. Chen, Mi & Peng, Xiaofan & Guo, Junyi, 2013. "Optimal dividend problem with a nonlinear regular-singular stochastic control," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 448-456.
    18. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    19. Jin, Zhuo & Yang, Hailiang & Yin, G., 2015. "Optimal debt ratio and dividend payment strategies with reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 351-363.
    20. Szölgyenyi Michaela, 2015. "Dividend maximization in a hidden Markov switching model," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 143-158, December.

    More about this item

    Keywords

    Dividend; Dynamic programming principle; General diffusion; Optimization; Regime-switching; IM13; IE20; IB63;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G35 - Financial Economics - - Corporate Finance and Governance - - - Payout Policy
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:2:p:439-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.