IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v166y2020ics0167715220301826.html
   My bibliography  Save this article

Large sample properties of the regression depth induced median

Author

Listed:
  • Zuo, Yijun

Abstract

Notions of depth in regression have been introduced and studied in the literature. Regression depth (RD) of Rousseeuw and Hubert (1999), the most famous one, is a direct extension of Tukey location depth (Tukey, 1975) to regression.

Suggested Citation

  • Zuo, Yijun, 2020. "Large sample properties of the regression depth induced median," Statistics & Probability Letters, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301826
    DOI: 10.1016/j.spl.2020.108879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Aelst, Stefan & Rousseeuw, Peter J., 2000. "Robustness of Deepest Regression," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 82-106, April.
    2. Carrizosa, Emilio, 1996. "A Characterization of Halfspace Depth," Journal of Multivariate Analysis, Elsevier, vol. 58(1), pages 21-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Yijun, 2024. "Non-asymptotic robustness analysis of regression depth median," Journal of Multivariate Analysis, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yijun Zuo, 2020. "Depth Induced Regression Medians and Uniqueness," Stats, MDPI, vol. 3(2), pages 1-13, April.
    2. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    4. Yijun Zuo, 2021. "Robustness of the deepest projection regression functional," Statistical Papers, Springer, vol. 62(3), pages 1167-1193, June.
    5. Kris Boudt & Derya Caliskan & Christophe Croux, 2011. "Robust explicit estimators of Weibull parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 187-209, March.
    6. Van Aelst, Stefan & Rousseeuw, Peter J. & Hubert, Mia & Struyf, Anja, 2002. "The Deepest Regression Method," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 138-166, April.
    7. Mizera, Ivan & Volauf, Milos, 2002. "Continuity of Halfspace Depth Contours and Maximum Depth Estimators: Diagnostics of Depth-Related Methods," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 365-388, November.
    8. Zuo, Yijun, 2024. "Non-asymptotic robustness analysis of regression depth median," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    9. Debruyne, M. & Hubert, M. & Portnoy, S. & Vanden Branden, K., 2008. "Censored depth quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1604-1614, January.
    10. Fraiman, Ricardo & Gamboa, Fabrice & Moreno, Leonardo, 2019. "Connecting pairwise geodesic spheres by depth: DCOPS," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 81-94.
    11. Müller, Christine H., 2005. "Depth estimators and tests based on the likelihood principle with application to regression," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 153-181, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.