IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v165y2020ics0167715220301620.html
   My bibliography  Save this article

On the entrance at infinity of Feller processes with no negative jumps

Author

Listed:
  • Foucart, Clément
  • Li, Pei-Sen
  • Zhou, Xiaowen

Abstract

Consider a non-explosive positive Feller process with no negative jumps. It is shown in this note that when infinity is an entrance boundary, in the sense that the entrance times of the process remain bounded when the initial value tends to infinity, the process admits a Feller extension on the compactified state space [0,∞]. Moreover, when started from infinity, the extended Markov process on [0,∞] leaves infinity instantaneously and stays finite, almost-surely. Arguments are adapted from a proof given by Kallenberg (2002) for diffusions. We also show that the process started from x converges weakly towards that started from infinity in the Skorokhod space, when x goes to infinity.

Suggested Citation

  • Foucart, Clément & Li, Pei-Sen & Zhou, Xiaowen, 2020. "On the entrance at infinity of Feller processes with no negative jumps," Statistics & Probability Letters, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301620
    DOI: 10.1016/j.spl.2020.108859
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Zongfei & Li, Zenghu, 2010. "Stochastic equations of non-negative processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 306-330, March.
    2. Li, Pei-Sen, 2019. "A continuous-state polynomial branching process," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2941-2967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong-Hua Mao & Tao Wang, 2022. "Convergence Rates in Uniform Ergodicity by Hitting Times and $$L^2$$ L 2 -Exponential Convergence Rates," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2690-2711, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foucart, Clément & Vidmar, Matija, 2024. "Continuous-state branching processes with collisions: First passage times and duality," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
    2. Pei-Sen Li & Xiaowen Zhou, 2023. "Integral Functionals for Spectrally Positive Lévy Processes," Journal of Theoretical Probability, Springer, vol. 36(1), pages 297-314, March.
    3. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    4. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    5. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    6. Friesen, Martin & Jin, Peng & Rüdiger, Barbara, 2020. "Existence of densities for multi-type continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5426-5452.
    7. Grosjean, Nicolas & Huillet, Thierry, 2016. "Deterministic versus stochastic aspects of superexponential population growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 27-37.
    8. Fontana, Claudio & Gnoatto, Alessandro & Szulda, Guillaume, 2023. "CBI-time-changed Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 323-349.
    9. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    10. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2017. "Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations," Papers 1711.02140, arXiv.org, revised Feb 2019.
    11. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    12. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    13. Ying Jiao & Chunhua Ma & Simone Scotti, 2016. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Working Papers hal-01275397, HAL.
    14. Li, Zenghu & Xu, Wei, 2018. "Asymptotic results for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 108-131.
    15. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    16. Le, V., 2022. "On the extinction of continuous state branching processes with competition," Statistics & Probability Letters, Elsevier, vol. 185(C).
    17. Li, Pei-Sen, 2019. "A continuous-state polynomial branching process," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2941-2967.
    18. Ma, Rugang, 2014. "Stochastic equations for two-type continuous-state branching processes with immigration and competition," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 83-89.
    19. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2022. "CBI-time-changed Lévy processes," Working Papers 05/2022, University of Verona, Department of Economics.
    20. Ma, Rugang, 2015. "Lamperti transformation for continuous-state branching processes with competition and applications," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 11-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.