IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v162y2020ics0167715220300778.html
   My bibliography  Save this article

Intrinsic covariance matrix estimation for multivariate elliptical distributions

Author

Listed:
  • Guo, Junhao
  • Zhou, Jie
  • Hu, Sanfeng

Abstract

The property of statistical models not depending on the coordinate systems or model parametrization is one main interest of intrinsic inference in statistics. The intrinsic covariance matrix estimation is addressed for multivariate elliptical distributions in this paper. An optimal intrinsic covariance estimator is derived in the sense of minimizing the mean square Rao distance, and proved to own intrinsic unbiasedness. Specifically, the intrinsically unbiased estimators for elliptical distributions and mixture elliptical distributions are developed.

Suggested Citation

  • Guo, Junhao & Zhou, Jie & Hu, Sanfeng, 2020. "Intrinsic covariance matrix estimation for multivariate elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:stapro:v:162:y:2020:i:c:s0167715220300778
    DOI: 10.1016/j.spl.2020.108774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220300778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sutradhar, Brajendra C. & Ali, Mir M., 1989. "A generalization of the Wishart distribution for the elliptical model and its moments for the multivariate t model," Journal of Multivariate Analysis, Elsevier, vol. 29(1), pages 155-162, April.
    2. Berkane, Maia & Oden, Kevin & Bentler, Peter M., 1997. "Geodesic Estimation in Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 35-46, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    2. A. Micchelli, Charles & Noakes, Lyle, 2005. "Rao distances," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 97-115, January.
    3. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    4. Ogasawara, Haruhiko, 2023. "The density of the sample correlations under elliptical symmetry with or without the truncated variance-ratio," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    5. Kibria, B.M. Golam, 2006. "The matrix-t distribution and its applications in predictive inference," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 785-795, March.
    6. Micheas, Athanasios C. & Dey, Dipak K., 2005. "Modeling shape distributions and inferences for assessing differences in shapes," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 257-280, February.
    7. Kibria, B. M. Golam & Haq, M. Safiul, 1999. "Predictive Inference for the Elliptical Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 68(2), pages 235-249, February.
    8. Bodnar, Olha & Bodnar, Taras, 2021. "Objective Bayesian meta-analysis based on generalized multivariate random effects model," Working Papers 2021:5, Örebro University, School of Business.
    9. A. Batsidis & K. Zografos, 2006. "Discrimination of Observations into One of Two Elliptic Populations based on Monotone Training Samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 64(2), pages 221-241, October.
    10. Ke-Hai Yuan & Peter Bentler, 2004. "On the asymptotic distributions of two statistics for two-level covariance structure models within the class of elliptical distributions," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 437-457, September.
    11. Bekker, Andriëtte & van Niekerk, Janet & Arashi, Mohammad, 2017. "Wishart distributions: Advances in theory with Bayesian application," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 272-283.
    12. Fang, B.Q., 2008. "Noncentral matrix quadratic forms of the skew elliptical variables," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1105-1127, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:162:y:2020:i:c:s0167715220300778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.