IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v151y2019icp29-35.html
   My bibliography  Save this article

Large rank-based models with common noise

Author

Listed:
  • Kolli, Praveen
  • Sarantsev, Andrey

Abstract

For large systems of Brownian particles interacting through their ranks introduced in (Banner et al., 2005), the empirical cumulative distribution function satisfies a porous medium PDE. However, when we introduce a common noise, the limit is no longer deterministic. Instead, we show that this limit is a solution of a stochastic PDE related to this porous medium PDE. This stochastic PDE is somewhat similar to the equations developed for conservation laws with rough stochastic fluxes (Lions et al., 2013).

Suggested Citation

  • Kolli, Praveen & Sarantsev, Andrey, 2019. "Large rank-based models with common noise," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 29-35.
  • Handle: RePEc:eee:stapro:v:151:y:2019:i:c:p:29-35
    DOI: 10.1016/j.spl.2019.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    2. Gess, Benjamin & Souganidis, Panagiotis E., 2017. "Stochastic non-isotropic degenerate parabolic–hyperbolic equations," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2961-3004.
    3. B. Jourdain, 2000. "Diffusion Processes Associated with Nonlinear Evolution Equations for Signed Measures," Methodology and Computing in Applied Probability, Springer, vol. 2(1), pages 69-91, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mykhaylo Shkolnikov & Lane Chun Yeung, 2024. "From rank-based models with common noise to pathwise entropy solutions of SPDEs," Papers 2406.07286, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    2. Kashlak, Adam B., 2021. "Non-asymptotic error controlled sparse high dimensional precision matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    3. Mykhaylo Shkolnikov & Lane Chun Yeung, 2024. "From rank-based models with common noise to pathwise entropy solutions of SPDEs," Papers 2406.07286, arXiv.org.
    4. Huangdi Yi & Qingzhao Zhang & Cunjie Lin & Shuangge Ma, 2022. "Information‐incorporated Gaussian graphical model for gene expression data," Biometrics, The International Biometric Society, vol. 78(2), pages 512-523, June.
    5. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    6. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    7. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    8. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Deep Risk Model: A Deep Learning Solution for Mining Latent Risk Factors to Improve Covariance Matrix Estimation," Papers 2107.05201, arXiv.org, revised Oct 2021.
    9. Ata Kabán & Efstratios Palias, 2024. "A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-17, December.
    10. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    11. Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    12. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    13. Brownlees, Christian & Mesters, Geert, 2021. "Detecting granular time series in large panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 544-561.
    14. Enrico Bernardi & Matteo Farnè, 2022. "A Log-Det Heuristics for Covariance Matrix Estimation: The Analytic Setup," Stats, MDPI, vol. 5(3), pages 1-11, July.
    15. Xu, Hao & Gardoni, Paolo, 2020. "Conditional formulation for the calibration of multi-level random fields with incomplete data," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Lim Hao Shen Keith, 2024. "Covariance Matrix Analysis for Optimal Portfolio Selection," Papers 2407.08748, arXiv.org.
    17. Wang, Shaoxin, 2021. "An efficient numerical method for condition number constrained covariance matrix approximation," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    18. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    19. Yunxi Zhang & Soeun Kim, 2024. "Gaussian Graphical Model Estimation and Selection for High-Dimensional Incomplete Data Using Multiple Imputation and Horseshoe Estimators," Mathematics, MDPI, vol. 12(12), pages 1-15, June.
    20. Shkolnikov, Mykhaylo, 2013. "Large volatility-stabilized markets," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 212-228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:151:y:2019:i:c:p:29-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.