IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v141y2018icp114-124.html
   My bibliography  Save this article

On some applications of Sobolev flows of SDEs with unbounded drift coefficients

Author

Listed:
  • Menoukeu Pamen, Olivier

Abstract

We study two applications of spatial Sobolev smoothness of stochastic flows of unique strong solution to stochastic differential equations (SDEs) with irregular drift coefficients. First, we analyse the stochastic transport equation assuming that the drift coefficient is Borel measurable, with spatial linear growth and show that the above equation has a unique Sobolev differentiable weak coefficient for all t∈[0,T] for T small enough. Second, we consider the Kolmogorov equation and obtain a representation of the spatial derivative of its solution v. The latter result is obtained via the martingale representation theorem given in (Elliott and Kohlmann, 1988) and generalises the results in (Elworthy and Li, 1994; Menoukeu-Pamen et al., 2013).

Suggested Citation

  • Menoukeu Pamen, Olivier, 2018. "On some applications of Sobolev flows of SDEs with unbounded drift coefficients," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 114-124.
  • Handle: RePEc:eee:stapro:v:141:y:2018:i:c:p:114-124
    DOI: 10.1016/j.spl.2018.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    2. Elliott, Robert J. & Kohlmann, Michael, 1988. "A short proof of a martingale representation result," Statistics & Probability Letters, Elsevier, vol. 6(5), pages 327-329, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cont, Rama & Lu, Yi, 2016. "Weak approximation of martingale representations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 857-882.
    2. Georgii Riabov & Aleh Tsyvinski, 2021. "Policy with stochastic hysteresis," Papers 2104.10225, arXiv.org.
    3. Andreas Neuenkirch & Peter Parczewski, 2018. "Optimal Approximation of Skorohod Integrals," Journal of Theoretical Probability, Springer, vol. 31(1), pages 206-231, March.
    4. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    5. Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
    6. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    7. Leão, Dorival & Ohashi, Alberto, 2010. "Weak Approximations for Wiener Functionals," Insper Working Papers wpe_215, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    8. repec:pri:metric:wp033_2012_hansen_borovicka_hendricks_scheinkman_risk%20price%20dynamics. is not listed on IDEAS
    9. E. Benhamou & E. Gobet & M. Miri, 2009. "Smart expansion and fast calibration for jump diffusions," Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
    10. Jakša Cvitanić & Jin Ma & Jianfeng Zhang, 2003. "Efficient Computation of Hedging Portfolios for Options with Discontinuous Payoffs," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 135-151, January.
    11. Ron Kaniel & Stathis Tompaidis & Alexander Zemlianov, 2008. "Efficient Computation of Hedging Parameters for Discretely Exercisable Options," Operations Research, INFORMS, vol. 56(4), pages 811-826, August.
    12. Warin Xavier, 2018. "Nesting Monte Carlo for high-dimensional non-linear PDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 225-247, December.
    13. Akihiko Takahashi & Toshihiro Yamada, 2012. "A Remark on Approximation of the Solutions to Partial Differential Equations in Finance," CIRJE F-Series CIRJE-F-842, CIRJE, Faculty of Economics, University of Tokyo.
    14. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    15. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    16. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    17. Elisa Alòs & Christian-Olivier Ewald, 2005. "A note on the Malliavin differentiability of the Heston volatility," Economics Working Papers 880, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Dong An & Noah Linden & Jin-Peng Liu & Ashley Montanaro & Changpeng Shao & Jiasu Wang, 2020. "Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance," Papers 2012.06283, arXiv.org, revised Jun 2021.
    19. Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus," CIRJE F-Series CIRJE-F-1212, CIRJE, Faculty of Economics, University of Tokyo.
    20. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    21. Romuald Elie, 2009. "Double Kernel estimation of sensitivities," Post-Print hal-00416449, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:141:y:2018:i:c:p:114-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.