IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v116y2016icp107-115.html
   My bibliography  Save this article

Optimal designs for regression models with autoregressive errors

Author

Listed:
  • Dette, Holger
  • Pepelyshev, Andrey
  • Zhigljavsky, Anatoly

Abstract

In the one-parameter regression model with AR(1) and AR(2) errors we find explicit expressions and a continuous approximation of the optimal discrete design for the signed least square estimator. The results are used to derive the optimal variance of the best linear estimator in the continuous time model and to construct efficient estimators and corresponding optimal designs for finite samples.

Suggested Citation

  • Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2016. "Optimal designs for regression models with autoregressive errors," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 107-115.
  • Handle: RePEc:eee:stapro:v:116:y:2016:i:c:p:107-115
    DOI: 10.1016/j.spl.2016.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521630027X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. S. Chan & H. Tong, 1987. "A Note On Embedding A Discrete Parameter Arma Model In A Continuous Parameter Arma Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 277-281, May.
    2. Zhigljavsky, Anatoly & Dette, Holger & Pepelyshev, Andrey, 2010. "A New Approach to Optimal Design for Linear Models With Correlated Observations," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1093-1103.
    3. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    2. Dette, Holger & Schorning, Kirsten & Konstantinou, Maria, 2017. "Optimal designs for comparing regression models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 273-286.
    3. Rodríguez-Díaz, Juan M., 2017. "Computation of c-optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 287-296.
    4. Holger Dette & Martin Kroll, 2022. "Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1163-1196, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Kessler & A. Rahbek, 2004. "Identification and Inference for Multivariate Cointegrated and Ergodic Gaussian Diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 7(2), pages 137-151, May.
    2. Dette, Holger & Schorning, Kirsten & Konstantinou, Maria, 2017. "Optimal designs for comparing regression models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 273-286.
    3. Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
    4. Ngai Chan & Yury Kutoyants, 2012. "On parameter estimation of threshold autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 81-104, April.
    5. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    6. Michael D. Hunter & Haya Fatimah & Marina A. Bornovalova, 2022. "Two Filtering Methods of Forecasting Linear and Nonlinear Dynamics of Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 477-505, June.
    7. Karl Schmidt & Anatoly Zhigljavsky, 2013. "An extremal property of the generalized arcsine distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 347-355, April.
    8. Luc Pronzato & Henry P. Wynn & Anatoly Zhigljavsky, 2016. "Extremal measures maximizing functionals based on simplicial volumes," Statistical Papers, Springer, vol. 57(4), pages 1059-1075, December.
    9. Peter J. Brockwell, 1995. "A Note On The Embedding Of Discrete‐Time Arma Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(5), pages 451-460, September.
    10. Tómasson, Helgi, 2011. "Some Computational Aspects of Gaussian CARMA Modelling," Economics Series 274, Institute for Advanced Studies.
    11. Michael C. Fu & Huashuai Qu, 2014. "Regression Models Augmented with Direct Stochastic Gradient Estimators," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 484-499, August.
    12. Ma, Chunsheng, 2005. "A class of stationary random fields with a simple correlation structure," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 313-327, June.
    13. Peter Brockwell & Jens-Peter Kreiss & Tobias Niebuhr, 2014. "Bootstrapping continuous-time autoregressive processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 75-92, February.
    14. Valerie Girardin & Rachid Senoussi, 2020. "Filling the gap between Continuous and Discrete Time Dynamics of Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 590-602, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:116:y:2016:i:c:p:107-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.