IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v109y2016icp194-201.html
   My bibliography  Save this article

Modelling circular random variables with a spike at zero

Author

Listed:
  • Biswas, Atanu
  • Jha, Jayant
  • Dutta, Somak

Abstract

This paper discusses models for circular responses with a spike at zero. Maximum likelihood estimation for the underlying parameters and a test for checking a spike are also carried out. Simulations and a real data example are considered for illustrations.

Suggested Citation

  • Biswas, Atanu & Jha, Jayant & Dutta, Somak, 2016. "Modelling circular random variables with a spike at zero," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 194-201.
  • Handle: RePEc:eee:stapro:v:109:y:2016:i:c:p:194-201
    DOI: 10.1016/j.spl.2015.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215301504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suvrit Sra, 2012. "A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of I s (x)," Computational Statistics, Springer, vol. 27(1), pages 177-190, March.
    2. Akihiro Tanabe & Kenji Fukumizu & Shigeyuki Oba & Takashi Takenouchi & Shin Ishii, 2007. "Parameter estimation for von Mises–Fisher distributions," Computational Statistics, Springer, vol. 22(1), pages 145-157, April.
    3. Angers, Jean-Francois & Biswas, Atanu, 2003. "A Bayesian analysis of zero-inflated generalized Poisson model," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 37-46, February.
    4. Dietz, Ekkehart & Bohning, Dankmar, 2000. "On estimation of the Poisson parameter in zero-modified Poisson models," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 441-459, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesley Bertoli & Katiane S. Conceição & Marinho G. Andrade & Francisco Louzada, 2018. "On the zero-modified Poisson–Shanker regression model and its application to fetal deaths notification data," Computational Statistics, Springer, vol. 33(2), pages 807-836, June.
    2. Yip, Karen C.H. & Yau, Kelvin K.W., 2005. "On modeling claim frequency data in general insurance with extra zeros," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 153-163, April.
    3. Hornik, Kurt & Grün, Bettina, 2014. "movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i10).
    4. Hossein Kavand & Marcel Voia, 2018. "Estimation of Health Care Demand and its Implication on Income Effects of Individuals," Springer Proceedings in Business and Economics, in: William H. Greene & Lynda Khalaf & Paul Makdissi & Robin C. Sickles & Michael Veall & Marcel-Cristia (ed.), Productivity and Inequality, pages 275-304, Springer.
    5. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2014. "Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1383-1392, June.
    6. You, Kisung & Suh, Changhee, 2022. "Parameter estimation and model-based clustering with spherical normal distribution on the unit hypersphere," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    7. Minerva Mukhopadhyay & Didong Li & David B. Dunson, 2020. "Estimating densities with non‐linear support by using Fisher–Gaussian kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1249-1271, December.
    8. Marzieh Shahmandi & Paul Wilson & Mike Thelwall, 2020. "A new algorithm for zero-modified models applied to citation counts," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 993-1010, November.
    9. Chen, Xue-Dong & Fu, Ying-Zi, 2011. "Model selection for zero-inflated regression with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 765-773, January.
    10. Flores, O. & Rossi, V. & Mortier, F., 2009. "Autocorrelation offsets zero-inflation in models of tropical saplings density," Ecological Modelling, Elsevier, vol. 220(15), pages 1797-1809.
    11. Dankmar Böhning & Helen E. Ogden, 2021. "General flation models for count data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 245-261, February.
    12. Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
    13. Helai Huang & Hong Chin, 2010. "Modeling road traffic crashes with zero-inflation and site-specific random effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 445-462, August.
    14. Baksh, M. Fazil & Böhning, Dankmar & Lerdsuwansri, Rattana, 2011. "An extension of an over-dispersion test for count data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 466-474, January.
    15. Árpád Baricz, 2014. "Remarks on a parameter estimation for von Mises–Fisher distributions," Computational Statistics, Springer, vol. 29(3), pages 891-894, June.
    16. Dalrymple, M. L. & Hudson, I. L. & Ford, R. P. K., 2003. "Finite Mixture, Zero-inflated Poisson and Hurdle models with application to SIDS," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 491-504, January.
    17. Sra, Suvrit & Karp, Dmitrii, 2013. "The multivariate Watson distribution: Maximum-likelihood estimation and other aspects," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 256-269.
    18. Susanne Gschlößl & Claudia Czado, 2008. "Modelling count data with overdispersion and spatial effects," Statistical Papers, Springer, vol. 49(3), pages 531-552, July.
    19. Emura, Takeshi & Konno, Yoshihiko, 2012. "A goodness-of-fit test for parametric models based on dependently truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2237-2250.
    20. Xu, Hang & Alvo, Mayer & Yu, Philip L.H., 2018. "Angle-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 113-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:109:y:2016:i:c:p:194-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.