IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v107y2015icp93-100.html
   My bibliography  Save this article

Discrete time shock models involving runs

Author

Listed:
  • Eryilmaz, Serkan

Abstract

In this paper, three different discrete time shock models are studied. In the first model, the failure occurs when the additively accumulated damage exceeds a certain level while in the second model the system fails upon the local damage caused by the consecutively occurring shocks. The third model is a mixed model and combines the first and second models. The survival functions of the systems under these models are obtained when the occurrences of the shocks are independent, and when they are Markov dependent over the periods.

Suggested Citation

  • Eryilmaz, Serkan, 2015. "Discrete time shock models involving runs," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 93-100.
  • Handle: RePEc:eee:stapro:v:107:y:2015:i:c:p:93-100
    DOI: 10.1016/j.spl.2015.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215002862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frosso S. Makri & Zaharias M. Psillakis, 2011. "On Success Runs of Length Exceeded a Threshold," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 269-305, June.
    2. Fermín Mallor & Javier Santos, 2003. "Reliability of systems subject to shocks with a stochastic dependence for the damages," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 427-444, December.
    3. Gerber, Hans U., 1988. "Mathematical Fun with the Compound Binomial Process," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 161-168, November.
    4. Frosso Makri & Zaharias Psillakis, 2011. "On runs of length exceeding a threshold: normal approximation," Statistical Papers, Springer, vol. 52(3), pages 531-551, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arapis, Anastasios N. & Makri, Frosso S. & Psillakis, Zaharias M., 2016. "On the length and the position of the minimum sequence containing all runs of ones in a Markovian binary sequence," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 45-54.
    2. Wang, Xiaoyue & Zhao, Xian & Wang, Siqi & Sun, Leping, 2020. "Reliability and maintenance for performance-balanced systems operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Yanbo Song & Xiaoyue Wang, 2022. "Reliability Analysis of the Multi-State k -out-of- n : F Systems with Multiple Operation Mechanisms," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    4. Anastasios N. Arapis & Frosso S. Makri & Zaharias M. Psillakis, 2017. "Joint distribution of k-tuple statistics in zero-one sequences of Markov-dependent trials," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eryilmaz, Serkan, 2018. "On success runs in a sequence of dependent trials with a change point," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 91-98.
    2. Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2009. "Ruin problems in a discrete Markov risk model," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 21-28, January.
    3. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.
    4. Li, Shuanming & Garrido, José, 2002. "On the time value of ruin in the discrete time risk model," DEE - Working Papers. Business Economics. WB wb021812, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    5. Cheng, Shixue & Gerber, Hans U. & Shiu, Elias S. W., 2000. "Discounted probabilities and ruin theory in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 239-250, May.
    6. Bao, Zhenhua & Song, Lixin & Liu, He, 2013. "A note on the inflated-parameter binomial distribution," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1911-1914.
    7. Jewgeni H. Dshalalow & Hend Aljahani, 2023. "Discrete and Continuous Operational Calculus in N-Critical Shocks Reliability Systems with Aging under Delayed Information," Mathematics, MDPI, vol. 11(16), pages 1-27, August.
    8. Frosso S. Makri & Zaharias M. Psillakis, 2016. "On runs of ones defined on a q-sequence of binary trials," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 579-602, July.
    9. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    10. Spiros D. Dafnis & Frosso S. Makri, 2023. "Distributions Related to Weak Runs With a Minimum and a Maximum Number of Successes: A Unified Approach," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    11. Stathis Chadjiconstantinidis & Altan Tuncel & Serkan Eryilmaz, 2023. "Α new mixed δ-shock model with a change in shock distribution," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 491-509, October.
    12. De Vylder, F. E. & Goovaerts, M. J., 1999. "Inequality extensions of Prabhu's formula in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 249-271, May.
    13. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    14. Cindy Courtois & Michel Denuit, 2009. "Moment Bounds on Discrete Expected Stop-Loss Transforms, with Applications," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 307-338, September.
    15. Arapis, Anastasios N. & Makri, Frosso S. & Psillakis, Zaharias M., 2016. "On the length and the position of the minimum sequence containing all runs of ones in a Markovian binary sequence," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 45-54.
    16. Sophie Mercier & Hai Ha Pham, 2016. "A Random Shock Model with Mixed Effect, Including Competing Soft and Sudden Failures, and Dependence," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 377-400, June.
    17. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    18. Cossette, Helene & Landriault, David & Marceau, Etienne, 2004. "Exact expressions and upper bound for ruin probabilities in the compound Markov binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 449-466, June.
    19. David Landriault, 2008. "On a generalization of the expected discounted penalty function in a discrete‐time insurance risk model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 525-539, November.
    20. María Luz Gámiz & Delia Montoro-Cazorla & María del Carmen Segovia-García & Rafael Pérez-Ocón, 2022. "MoMA Algorithm: A Bottom-Up Modeling Procedure for a Modular System under Environmental Conditions," Mathematics, MDPI, vol. 10(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:107:y:2015:i:c:p:93-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.