IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v107y2015icp313-323.html
   My bibliography  Save this article

Model selection in high-dimensional quantile regression with seamless L0 penalty

Author

Listed:
  • Ciuperca, Gabriela

Abstract

We introduce and study the seamless L0 quantile estimator in a linear model when the number of parameters increases with sample size. For this estimator we derive the convergence rate and oracle properties. A consistent BIC criterion to select the tuning parameters is given.

Suggested Citation

  • Ciuperca, Gabriela, 2015. "Model selection in high-dimensional quantile regression with seamless L0 penalty," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 313-323.
  • Handle: RePEc:eee:stapro:v:107:y:2015:i:c:p:313-323
    DOI: 10.1016/j.spl.2015.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215003302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela Ciuperca, 2019. "Adaptive group LASSO selection in quantile models," Statistical Papers, Springer, vol. 60(1), pages 173-197, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    2. Li, Xinyi & Wang, Li & Nettleton, Dan, 2019. "Sparse model identification and learning for ultra-high-dimensional additive partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 204-228.
    3. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
    4. Xianwen Ding & Zhihuang Yang, 2024. "Adaptive Bi-Level Variable Selection for Quantile Regression Models with a Diverging Number of Covariates," Mathematics, MDPI, vol. 12(20), pages 1-23, October.
    5. Giessing, Alexander & He, Xuming, 2019. "On the predictive risk in misspecified quantile regression," Journal of Econometrics, Elsevier, vol. 213(1), pages 235-260.
    6. Kaul, Abhishek & Koul, Hira L., 2015. "Weighted ℓ1-penalized corrected quantile regression for high dimensional measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 72-91.
    7. Wolfgang Karl Härdle & David Kuo Chuen Lee & Sergey Nasekin & Alla Petukhina, 2018. "Tail Event Driven ASset allocation: evidence from equity and mutual funds’ markets," Journal of Asset Management, Palgrave Macmillan, vol. 19(1), pages 49-63, January.
    8. Paolo Frumento & Matteo Bottai & Iv'an Fern'andez-Val, 2020. "Parametric Modeling of Quantile Regression Coefficient Functions with Longitudinal Data," Papers 2006.00160, arXiv.org.
    9. Xu, Qifa & Zhou, Yingying & Jiang, Cuixia & Yu, Keming & Niu, Xufeng, 2016. "A large CVaR-based portfolio selection model with weight constraints," Economic Modelling, Elsevier, vol. 59(C), pages 436-447.
    10. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    11. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    12. Bo Wei & Limin Peng & Ying Guo & Amita Manatunga & Jennifer Stevens, 2023. "Tensor response quantile regression with neuroimaging data," Biometrics, The International Biometric Society, vol. 79(3), pages 1947-1958, September.
    13. Giovanni Bonaccolto, 2021. "Quantile– based portfolios: post– model– selection estimation with alternative specifications," Computational Management Science, Springer, vol. 18(3), pages 355-383, July.
    14. Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
    15. Xu, Qifa & Niu, Xufeng & Jiang, Cuixia & Huang, Xue, 2015. "The Phillips curve in the US: A nonlinear quantile regression approach," Economic Modelling, Elsevier, vol. 49(C), pages 186-197.
    16. Toshio Honda & Chien-Tong Lin, 2023. "Forward variable selection for ultra-high dimensional quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 393-424, June.
    17. Eduardo F. Mendes & Gabriel J. P. Pinto, 2023. "Generalized Information Criteria for Structured Sparse Models," Papers 2309.01764, arXiv.org.
    18. Hongqi Chen & Ji Hyung Lee, 2024. "Predictive Quantile Regression with High-Dimensional Predictors: The Variable Screening Approach," Papers 2410.15097, arXiv.org.
    19. Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.
    20. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    21. Adam Maidman & Lan Wang, 2018. "New semiparametric method for predicting high‐cost patients," Biometrics, The International Biometric Society, vol. 74(3), pages 1104-1111, September.

    More about this item

    Keywords

    High-dimension; Quantile regression; Seamless L0 penalty; Oracle properties; BIC criterion;
    All these keywords.

    JEL classification:

    • L0 - Industrial Organization - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:107:y:2015:i:c:p:313-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.