Model selection in high-dimensional quantile regression with seamless L0 penalty
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2015.09.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gabriela Ciuperca, 2019. "Adaptive group LASSO selection in quantile models," Statistical Papers, Springer, vol. 60(1), pages 173-197, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Uniejewski, Bartosz & Weron, Rafał, 2021.
"Regularized quantile regression averaging for probabilistic electricity price forecasting,"
Energy Economics, Elsevier, vol. 95(C).
- Bartosz Uniejewski & Rafal Weron, 2019. "Regularized Quantile Regression Averaging for probabilistic electricity price forecasting," HSC Research Reports HSC/19/04, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
- Li, Xinyi & Wang, Li & Nettleton, Dan, 2019. "Sparse model identification and learning for ultra-high-dimensional additive partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 204-228.
- Adam Maidman & Lan Wang, 2018. "New semiparametric method for predicting high‐cost patients," Biometrics, The International Biometric Society, vol. 74(3), pages 1104-1111, September.
- Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
- Honda, Toshio & 本田, 敏雄 & Lin, Chien-Tong, 2022. "Forward variable selection for ultra-high dimensional quantile regression models," Discussion Papers 2021-02, Graduate School of Economics, Hitotsubashi University.
- Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
- Xianwen Ding & Zhihuang Yang, 2024. "Adaptive Bi-Level Variable Selection for Quantile Regression Models with a Diverging Number of Covariates," Mathematics, MDPI, vol. 12(20), pages 1-23, October.
- Chavleishvili, Sulkhan & Engle, Robert F. & Fahr, Stephan & Kremer, Manfred & Manganelli, Simone & Schwaab, Bernd, 2021. "The risk management approach to macro-prudential policy," Working Paper Series 2565, European Central Bank.
- Giessing, Alexander & He, Xuming, 2019. "On the predictive risk in misspecified quantile regression," Journal of Econometrics, Elsevier, vol. 213(1), pages 235-260.
- Park, Seyoung & Lee, Eun Ryung, 2021. "Hypothesis testing of varying coefficients for regional quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Kaul, Abhishek & Koul, Hira L., 2015. "Weighted ℓ1-penalized corrected quantile regression for high dimensional measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 72-91.
- Eun Ryung Lee & Seyoung Park & Sang Kyu Lee & Hyokyoung G. Hong, 2023. "Quantile forward regression for high-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 769-806, October.
- Giovanni Bonaccolto, 2019. "Critical Decisions for Asset Allocation via Penalized Quantile Regression," Papers 1908.04697, arXiv.org.
- Wolfgang Karl Härdle & David Kuo Chuen Lee & Sergey Nasekin & Alla Petukhina, 2018.
"Tail Event Driven ASset allocation: evidence from equity and mutual funds’ markets,"
Journal of Asset Management, Palgrave Macmillan, vol. 19(1), pages 49-63, January.
- Härdle, Wolfgang Karl & Lee, David Kuo Chuen & Nasekin, Sergey & Ni, Xinwen & Petukhina, Alla, 2015. "Tail event driven ASset allocation: Evidence from equity and mutual funds' markets," SFB 649 Discussion Papers 2015-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Yu, Ke & Luo, Shan, 2024. "Rank-based sequential feature selection for high-dimensional accelerated failure time models with main and interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
- Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
- Lamarche, Carlos & Parker, Thomas, 2023.
"Wild bootstrap inference for penalized quantile regression for longitudinal data,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1799-1826.
- Carlos Lamarche & Thomas Parker, 2020. "Wild Bootstrap Inference for Penalized Quantile Regression for Longitudinal Data," Papers 2004.05127, arXiv.org, revised May 2022.
- Carlos Lamarche & Thomas Parker, 2022. "Wild Bootstrap Inference For Penalized Quantile Regression For Longitudinal Data," Working Papers 22003 Classification-C15,, University of Waterloo, Department of Economics.
- Paolo Frumento & Matteo Bottai & Iv'an Fern'andez-Val, 2020. "Parametric Modeling of Quantile Regression Coefficient Functions with Longitudinal Data," Papers 2006.00160, arXiv.org.
- HONDA, Toshio & 本田, 敏雄, 2023. "Sparse quantile regression via ℓ0-penalty," Discussion Papers 2023-03, Graduate School of Economics, Hitotsubashi University.
- Park, Seyoung & Kim, Hyunjin & Lee, Eun Ryung, 2023. "Regional quantile regression for multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
More about this item
Keywords
High-dimension; Quantile regression; Seamless L0 penalty; Oracle properties; BIC criterion;All these keywords.
JEL classification:
- L0 - Industrial Organization - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:107:y:2015:i:c:p:313-323. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.