IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v106y2015icp209-217.html
   My bibliography  Save this article

Packing dimensions of the images of Gaussian random fields

Author

Listed:
  • Du, Yali
  • Miao, Junjie
  • Wu, Dongsheng
  • Xiao, Yimin

Abstract

Let X={X(t):t∈RN} be a Gaussian random field with values in Rd and let E⊆RN be a Borel set. We determine the packing dimension of the image set X(E) in terms of the packing dimension profiles in the canonical metric ρ of X, which are extensions of the packing dimension profiles of Falconer and Howroyd (1997) and the box-counting dimension profiles of Howroyd (2001).

Suggested Citation

  • Du, Yali & Miao, Junjie & Wu, Dongsheng & Xiao, Yimin, 2015. "Packing dimensions of the images of Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 209-217.
  • Handle: RePEc:eee:stapro:v:106:y:2015:i:c:p:209-217
    DOI: 10.1016/j.spl.2015.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215002618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Yimin, 1997. "Packing dimension of the image of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 379-387, May.
    2. Xiao, Yimin, 2009. "A packing dimension theorem for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 88-97, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinjun, 2011. "A class of probability distribution functions preserving the packing dimension," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1782-1791.
    2. Falconer, Kenneth J., 2022. "Intermediate dimension of images of sequences under fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 182(C).
    3. Xiao, Yimin, 2009. "A packing dimension theorem for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 88-97, January.
    4. Meerschaert, Mark M. & Xiao, Yimin, 2005. "Dimension results for sample paths of operator stable Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 55-75, January.
    5. Stuart A. Burrell, 2022. "Dimensions of Fractional Brownian Images," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2217-2238, December.
    6. Daw, Lara & Kerchev, George, 2023. "Fractal dimensions of the Rosenblatt process," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 544-571.
    7. Lou, Shuwen & Ouyang, Cheng, 2016. "Fractal dimensions of rough differential equations driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2410-2429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:106:y:2015:i:c:p:209-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.