Tanaka formula for the fractional Brownian motion
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alòs, Elisa & Mazet, Olivier & Nualart, David, 2000. "Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 121-139, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Russo, Francesco & Tudor, Ciprian A., 2006. "On bifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 830-856, May.
- Yan, Litan & Yang, Xiangfeng & Lu, Yunsheng, 2008. "p-variation of an integral functional driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1148-1157, July.
- Shi, Qun & Yu, Xianye, 2017. "Fractional smoothness of derivative of self-intersection local times," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 241-251.
- Sun, Xichao & Yan, Litan & Yu, Xianye, 2019. "An integral functional driven by fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2249-2285.
- Franco Flandoli & Peter Imkeller & Ciprian A. Tudor, 2014. "2D-Stochastic Currents over the Wiener Sheet," Journal of Theoretical Probability, Springer, vol. 27(2), pages 552-575, June.
- Shen, Guangjun & Chen, Chao, 2012. "Stochastic integration with respect to the sub-fractional Brownian motion with H∈(0,12)," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 240-251.
- Raluca M. Balan & Ciprian A. Tudor, 2010. "Stochastic Heat Equation with Multiplicative Fractional-Colored Noise," Journal of Theoretical Probability, Springer, vol. 23(3), pages 834-870, September.
- Mukeru, Safari, 2017. "Representation of local times of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 1-12.
- Solesne Bourguin & Ciprian A. Tudor, 2012. "Asymptotic Theory for Fractional Regression Models via Malliavin Calculus," Journal of Theoretical Probability, Springer, vol. 25(2), pages 536-564, June.
- Ehsan Azmoodeh & Lauri Viitasaari, 2015. "Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 28(1), pages 396-422, March.
- Bender, Christian, 2003. "An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 81-106, March.
- Yaskov, Pavel, 2018. "Extensions of the sewing lemma with applications," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3940-3965.
- Cao, Guilan & He, Kai, 2007. "Quasi-sure p-variation of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 543-548, March.
- Tommi Sottinen & Lauri Viitasaari, 2016. "Pathwise Integrals and Itô–Tanaka Formula for Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 29(2), pages 590-616, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
- Bardina, X. & Nourdin, I. & Rovira, C. & Tindel, S., 2010. "Weak approximation of a fractional SDE," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 39-65, January.
- F. Comte & L. Coutin & E. Renault, 2012. "Affine fractional stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 337-378, May.
- David Nualart & Youssef Ouknine, 2003. "Besov Regularity of Stochastic Integrals with Respect to the Fractional Brownian Motion with Parameter H > 1/2," Journal of Theoretical Probability, Springer, vol. 16(2), pages 451-470, April.
- Ciprian Necula, 2008. "A Framework for Derivative Pricing in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 19, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
- Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
- León, Jorge A. & Nualart, David, 2005. "An extension of the divergence operator for Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 115(3), pages 481-492, March.
- Jolis, Maria & Viles, Noèlia, 2010. "Continuity in the Hurst parameter of the law of the symmetric integral with respect to the fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1651-1679, August.
- Lucian Maticiuc & Tianyang Nie, 2015. "Fractional Backward Stochastic Differential Equations and Fractional Backward Variational Inequalities," Journal of Theoretical Probability, Springer, vol. 28(1), pages 337-395, March.
- Jan Matas & Jan Posp'iv{s}il, 2021. "On simulation of rough Volterra stochastic volatility models," Papers 2108.01999, arXiv.org, revised Aug 2022.
- Ciprian Necula, 2008. "Pricing European and Barrier Options in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 20, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
- Mishari Al-Foraih & Jan Posp'iv{s}il & Josep Vives, 2023. "Computation of Greeks under rough Volterra stochastic volatility models using the Malliavin calculus approach," Papers 2312.00405, arXiv.org.
- Cao, Guilan & He, Kai, 2007. "Quasi-sure p-variation of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 543-548, March.
- Skorniakov, V., 2019. "On a covariance structure of some subset of self-similar Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1903-1920.
- Bender, Christian, 2003. "An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 81-106, March.
More about this item
Keywords
Fractional Brownian motion Local time Tanaka formula;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:94:y:2001:i:2:p:301-315. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.