IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v86y2000i1p121-139.html
   My bibliography  Save this article

Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than

Author

Listed:
  • Alòs, Elisa
  • Mazet, Olivier
  • Nualart, David

Abstract

In this paper we introduce a stochastic integral with respect to the process where 0

Suggested Citation

  • Alòs, Elisa & Mazet, Olivier & Nualart, David, 2000. "Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 121-139, March.
  • Handle: RePEc:eee:spapps:v:86:y:2000:i:1:p:121-139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00089-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Skorniakov, V., 2019. "On a covariance structure of some subset of self-similar Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1903-1920.
    2. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
    3. Ciprian Necula, 2008. "Pricing European and Barrier Options in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 20, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    4. Lucian Maticiuc & Tianyang Nie, 2015. "Fractional Backward Stochastic Differential Equations and Fractional Backward Variational Inequalities," Journal of Theoretical Probability, Springer, vol. 28(1), pages 337-395, March.
    5. León, Jorge A. & Nualart, David, 2005. "An extension of the divergence operator for Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 115(3), pages 481-492, March.
    6. F. Comte & L. Coutin & E. Renault, 2012. "Affine fractional stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 337-378, May.
    7. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    8. Ciprian Necula, 2008. "A Framework for Derivative Pricing in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 19, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    9. Mishari Al-Foraih & Jan Posp'iv{s}il & Josep Vives, 2023. "Computation of Greeks under rough Volterra stochastic volatility models using the Malliavin calculus approach," Papers 2312.00405, arXiv.org.
    10. Jan Matas & Jan Posp'iv{s}il, 2021. "On simulation of rough Volterra stochastic volatility models," Papers 2108.01999, arXiv.org, revised Aug 2022.
    11. Bardina, X. & Nourdin, I. & Rovira, C. & Tindel, S., 2010. "Weak approximation of a fractional SDE," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 39-65, January.
    12. Jolis, Maria & Viles, Noèlia, 2010. "Continuity in the Hurst parameter of the law of the symmetric integral with respect to the fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1651-1679, August.
    13. Bender, Christian, 2003. "An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 81-106, March.
    14. Cao, Guilan & He, Kai, 2007. "Quasi-sure p-variation of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 543-548, March.
    15. David Nualart & Youssef Ouknine, 2003. "Besov Regularity of Stochastic Integrals with Respect to the Fractional Brownian Motion with Parameter H > 1/2," Journal of Theoretical Probability, Springer, vol. 16(2), pages 451-470, April.
    16. Coutin, Laure & Nualart, David & Tudor, Ciprian A., 2001. "Tanaka formula for the fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 94(2), pages 301-315, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:86:y:2000:i:1:p:121-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.