IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v82y1999i2p335-338.html
   My bibliography  Save this article

Corrigendum to "Stability in of martingales and backward equations under discretization of filtration": [Stochastic Processes and their Applications 75 (1998) 235-248]

Author

Listed:
  • Coquet, François
  • Mackevicius, Vigirdas
  • Mémin, Jean

Abstract

No abstract is available for this item.

Suggested Citation

  • Coquet, François & Mackevicius, Vigirdas & Mémin, Jean, 1999. "Corrigendum to "Stability in of martingales and backward equations under discretization of filtration": [Stochastic Processes and their Applications 75 (1998) 235-248]," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 335-338, August.
  • Handle: RePEc:eee:spapps:v:82:y:1999:i:2:p:335-338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00020-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coquet, François & Mackevicius, Vigirdas & Mémin, Jean, 1998. "Stability in of martingales and backward equations under discretization of filtration," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 235-248, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomás Prieto-Rumeau & Onésimo Hernández-Lerma, 2016. "Uniform ergodicity of continuous-time controlled Markov chains: A survey and new results," Annals of Operations Research, Springer, vol. 241(1), pages 249-293, June.
    2. Hiroyuki Masuyama, 2016. "A sufficient condition for the subexponential asymptotics of GI/G/1-type Markov chains with queueing applications," Annals of Operations Research, Springer, vol. 247(1), pages 65-95, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    2. Crisan, D. & Manolarakis, K. & Touzi, N., 2010. "On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1133-1158, July.
    3. Kraft, Holger & Seifried, Frank Thomas, 2014. "Stochastic differential utility as the continuous-time limit of recursive utility," Journal of Economic Theory, Elsevier, vol. 151(C), pages 528-550.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:82:y:1999:i:2:p:335-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.