IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v74y1998i2p235-250.html
   My bibliography  Save this article

Hausdorff dimensions of random net fractals

Author

Listed:
  • Liang, Jin-Rong
  • Ren, Fu-Yao

Abstract

This paper studies the Hausdorff dimensions of random non-self-similar fractals. Here, we obtain the Hausdorff dimensional estimates of random net fractals generated by random contractions (including random transformation contraction and random ratio contraction). In addition, we give the definition of a random cookie-cutter set in and obtain its dimension formula.

Suggested Citation

  • Liang, Jin-Rong & Ren, Fu-Yao, 1998. "Hausdorff dimensions of random net fractals," Stochastic Processes and their Applications, Elsevier, vol. 74(2), pages 235-250, June.
  • Handle: RePEc:eee:spapps:v:74:y:1998:i:2:p:235-250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00104-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giona, Massimiliano & Eduardo Roman, H., 1992. "Fractional diffusion equation for transport phenomena in random media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 185(1), pages 87-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Jin-Rong, 2002. "Random Markov-self-similar measures," Stochastic Processes and their Applications, Elsevier, vol. 98(1), pages 113-130, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osman, S.A. & Langlands, T.A.M., 2019. "An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 609-626.
    2. Duan, Jun-Sheng & Wang, Zhong & Liu, Yu-Lu & Qiu, Xiang, 2013. "Eigenvalue problems for fractional ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 46-53.
    3. Gorenflo, Rudolf & Mainardi, Francesco & Moretti, Daniele & Pagnini, Gianni & Paradisi, Paolo, 2002. "Fractional diffusion: probability distributions and random walk models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(1), pages 106-112.
    4. Abdelkawy, M.A. & Alyami, S.A., 2021. "Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Lina Song, 2018. "A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    6. Vyacheslav Svetukhin, 2021. "Nucleation Controlled by Non-Fickian Fractional Diffusion," Mathematics, MDPI, vol. 9(7), pages 1-11, March.
    7. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:74:y:1998:i:2:p:235-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.