IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v348y2019icp609-626.html
   My bibliography  Save this article

An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations

Author

Listed:
  • Osman, S.A.
  • Langlands, T.A.M.

Abstract

In this work, we present a new implicit numerical scheme for fractional subdiffusion equations. In this approach we use the Keller Box method [1] to spatially discretise the fractional subdiffusion equation and we use a modified L1 scheme (ML1), similar to the L1 scheme originally developed by Oldham and Spanier [2], to approximate the fractional derivative. The stability of the proposed method was investigated by using Von-Neumann stability analysis. We have proved the method is unconditionally stable when 0<λq

Suggested Citation

  • Osman, S.A. & Langlands, T.A.M., 2019. "An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 609-626.
  • Handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:609-626
    DOI: 10.1016/j.amc.2018.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318310622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giona, Massimiliano & Eduardo Roman, H., 1992. "Fractional diffusion equation for transport phenomena in random media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 185(1), pages 87-97.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Jun-Sheng & Wang, Zhong & Liu, Yu-Lu & Qiu, Xiang, 2013. "Eigenvalue problems for fractional ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 46-53.
    2. Gorenflo, Rudolf & Mainardi, Francesco & Moretti, Daniele & Pagnini, Gianni & Paradisi, Paolo, 2002. "Fractional diffusion: probability distributions and random walk models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(1), pages 106-112.
    3. Abdelkawy, M.A. & Alyami, S.A., 2021. "Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Lina Song, 2018. "A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    5. Vyacheslav Svetukhin, 2021. "Nucleation Controlled by Non-Fickian Fractional Diffusion," Mathematics, MDPI, vol. 9(7), pages 1-11, March.
    6. Liang, Jin-Rong & Ren, Fu-Yao, 1998. "Hausdorff dimensions of random net fractals," Stochastic Processes and their Applications, Elsevier, vol. 74(2), pages 235-250, June.
    7. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.

    More about this item

    Keywords

    Fractional subdiffusion equation; Keller Box method; Fractional calculus; L1 scheme; Linear reaction;
    All these keywords.

    JEL classification:

    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:609-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.