IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v47y1993i2p323-344.html
   My bibliography  Save this article

Spectral estimates and stable processes

Author

Listed:
  • Klüppelberg, Claudia
  • Mikosch, Thomas

Abstract

Let be a discrete time moving average process based on i.i.d. symmetric random variables {Zt} with a common distribution function from the domain of normal attraction of a p-stable law (0

Suggested Citation

  • Klüppelberg, Claudia & Mikosch, Thomas, 1993. "Spectral estimates and stable processes," Stochastic Processes and their Applications, Elsevier, vol. 47(2), pages 323-344, September.
  • Handle: RePEc:eee:spapps:v:47:y:1993:i:2:p:323-344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(93)90021-U
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.
    2. Papa Ousmane Cissé & Dominique Guegan & Abdou Kâ Diongue, 2018. "On the parameters estimation of the Seasonal FISSAR Model," Post-Print halshs-01832115, HAL.
    3. Kokoszka, Piotr & Mikosch, Thomas, 2000. "The periodogram at the Fourier frequencies," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 49-79, March.
    4. Davis, Richard A., 1996. "Gauss-Newton and M-estimation for ARMA processes with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 63(1), pages 75-95, October.
    5. Kokoszka, Piotr S. & Taqqu, Murad S., 1995. "Fractional ARIMA with stable innovations," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 19-47, November.
    6. Cipriani, Alessandra & Hazra, Rajat Subhra & Ruszel, Wioletta M., 2018. "The divisible sandpile with heavy-tailed variables," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3054-3081.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:47:y:1993:i:2:p:323-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.