IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v156y2023icp101-125.html
   My bibliography  Save this article

Central limit theorems for discretized occupation time functionals

Author

Listed:
  • Altmeyer, Randolf

Abstract

The approximation of integral type functionals is studied for discrete observations of a continuous Itô semimartingale. Based on novel approximations in the Fourier domain, central limit theorems are proved for L2-Sobolev functions with fractional smoothness. An explicit L2(P)-lower bound shows that already lower order quadrature rules, such as the trapezoidal rule and the classical Riemann estimator, are rate optimal, but only the trapezoidal rule is efficient, achieving the minimal asymptotic variance.

Suggested Citation

  • Altmeyer, Randolf, 2023. "Central limit theorems for discretized occupation time functionals," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 101-125.
  • Handle: RePEc:eee:spapps:v:156:y:2023:i:c:p:101-125
    DOI: 10.1016/j.spa.2022.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922002381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohatsu-Higa, A. & Makhlouf, A. & Ngo, H.L., 2014. "Approximations of non-smooth integral type functionals of one dimensional diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1881-1909.
    2. Catellier, R. & Gubinelli, M., 2016. "Averaging along irregular curves and regularisation of ODEs," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2323-2366.
    3. Jacod, Jean & Mykland, Per A., 2015. "Microstructure noise in the continuous case: Approximate efficiency of the adaptive pre-averaging method," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2910-2936.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altmeyer, Randolf & Chorowski, Jakub, 2018. "Estimation error for occupation time functionals of stationary Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1830-1848.
    2. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    3. Li, M. Z. & Linton, O., 2021. "Robust Estimation of Integrated and Spot Volatility," Cambridge Working Papers in Economics 2115, Faculty of Economics, University of Cambridge.
    4. Clinet, Simon & Potiron, Yoann, 2018. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Journal of Econometrics, Elsevier, vol. 206(1), pages 103-142.
    5. David Baños & Salvador Ortiz-Latorre & Andrey Pilipenko & Frank Proske, 2022. "Strong Solutions of Stochastic Differential Equations with Generalized Drift and Multidimensional Fractional Brownian Initial Noise," Journal of Theoretical Probability, Springer, vol. 35(2), pages 714-771, June.
    6. Kulik, Alexei M., 2019. "On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 473-506.
    7. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    8. Iksanov, Alexander & Pilipenko, Andrey, 2023. "On a skew stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 44-68.
    9. Fabian A. Harang & Chengcheng Ling, 2022. "Regularity of Local Times Associated with Volterra–Lévy Processes and Path-Wise Regularization of Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1706-1735, September.
    10. Gassiat, Paul & Mądry, Łukasz, 2023. "Perturbations of singular fractional SDEs," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 137-172.
    11. Jean Jacod, 2019. "Estimation of volatility in a high-frequency setting: a short review," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 351-385, December.
    12. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    13. C. Bellingeri & A. Djurdjevac & P. K. Friz & N. Tapia, 2021. "Transport and continuity equations with (very) rough noise," Partial Differential Equations and Applications, Springer, vol. 2(4), pages 1-26, August.
    14. Vladim'ir Hol'y & Petra Tomanov'a, 2020. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Papers 2003.13062, arXiv.org, revised Dec 2021.
    15. Harang, Fabian A. & Mayorcas, Avi, 2023. "Pathwise regularisation of singular interacting particle systems and their mean field limits," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 499-540.
    16. Coffie, Emmanuel & Duedahl, Sindre & Proske, Frank, 2023. "Sensitivity analysis with respect to a stochastic stock price model with rough volatility via a Bismut–Elworthy–Li formula for singular SDEs," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 156-195.
    17. Bechtold, Florian & Hofmanová, Martina, 2023. "Weak solutions for singular multiplicative SDEs via regularization by noise," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 413-435.
    18. Li, Z. Merrick & Laeven, Roger J.A. & Vellekoop, Michel H., 2020. "Dependent microstructure noise and integrated volatility estimation from high-frequency data," Journal of Econometrics, Elsevier, vol. 215(2), pages 536-558.
    19. Richard Y. Chen, 2018. "Inference for Volatility Functionals of Multivariate It\^o Semimartingales Observed with Jump and Noise," Papers 1810.04725, arXiv.org, revised Nov 2019.
    20. Vladimír Holý & Petra Tomanová, 2023. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 463-485, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:156:y:2023:i:c:p:101-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.