IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v148y2022icp25-67.html
   My bibliography  Save this article

Dimension free convergence rates for Gibbs samplers for Bayesian linear mixed models

Author

Listed:
  • Jin, Zhumengmeng
  • Hobert, James P.

Abstract

The emergence of big data has led to a growing interest in so-called convergence complexity analysis, which is the study of how the convergence rate of a Monte Carlo Markov chain (for an intractable Bayesian posterior distribution) scales as the underlying data set grows in size. Convergence complexity analysis of practical Monte Carlo Markov chains on continuous state spaces is quite challenging, and there have been very few successful analyses of such chains. One fruitful analysis was recently presented by Qin and Hobert (2022), who studied a Gibbs sampler for a simple Bayesian random effects model. These authors showed that, under regularity conditions, the geometric convergence rate of this Gibbs sampler converges to zero as the data set grows in size. It is shown herein that similar behavior is exhibited by Gibbs samplers for more general Bayesian models that possess both random effects and traditional continuous covariates, the so-called mixed models. The analysis employs the Wasserstein-based techniques introduced by Qin and Hobert (2022).

Suggested Citation

  • Jin, Zhumengmeng & Hobert, James P., 2022. "Dimension free convergence rates for Gibbs samplers for Bayesian linear mixed models," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 25-67.
  • Handle: RePEc:eee:spapps:v:148:y:2022:i:c:p:25-67
    DOI: 10.1016/j.spa.2022.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922000394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gareth O. Roberts & Jeffrey S. Rosenthal, 2001. "Markov Chains and De‐initializing Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 489-504, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.
    2. Jin, Zhumengmeng & Hobert, James P., 2022. "On the convergence rate of the “out-of-order” block Gibbs sampler," Statistics & Probability Letters, Elsevier, vol. 188(C).
    3. Bryant Davis & James P. Hobert, 2021. "On the Convergence Complexity of Gibbs Samplers for a Family of Simple Bayesian Random Effects Models," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1323-1351, December.
    4. Wang, Xin & Roy, Vivekananda, 2018. "Analysis of the Pólya-Gamma block Gibbs sampler for Bayesian logistic linear mixed models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 251-256.
    5. James P. Hobert & Christian P. Robert & Vivekanada Roy, 2010. "Improving the Convergence Properties of the Data Augmentation Algorithm with an Application to Bayesian Mixture Modelling," Working Papers 2010-29, Center for Research in Economics and Statistics.
    6. Román, Jorge Carlos & Hobert, James P. & Presnell, Brett, 2014. "On reparametrization and the Gibbs sampler," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 110-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:148:y:2022:i:c:p:25-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.