IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v28y2001i3p489-504.html
   My bibliography  Save this article

Markov Chains and De‐initializing Processes

Author

Listed:
  • Gareth O. Roberts
  • Jeffrey S. Rosenthal

Abstract

We define a notion of de‐initializing Markov chains. We prove that to analyse convergence of Markov chains to stationarity, it suffices to analyse convergence of a de‐initializing chain. Applications are given to Markov chain Monte Carlo algorithms and to convergence diagnostics.

Suggested Citation

  • Gareth O. Roberts & Jeffrey S. Rosenthal, 2001. "Markov Chains and De‐initializing Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 489-504, September.
  • Handle: RePEc:bla:scjsta:v:28:y:2001:i:3:p:489-504
    DOI: 10.1111/1467-9469.00250
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00250
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James P. Hobert & Christian P. Robert & Vivekanada Roy, 2010. "Improving the Convergence Properties of the Data Augmentation Algorithm with an Application to Bayesian Mixture Modelling," Working Papers 2010-29, Center for Research in Economics and Statistics.
    2. Román, Jorge Carlos & Hobert, James P. & Presnell, Brett, 2014. "On reparametrization and the Gibbs sampler," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 110-116.
    3. Jin, Zhumengmeng & Hobert, James P., 2022. "On the convergence rate of the “out-of-order” block Gibbs sampler," Statistics & Probability Letters, Elsevier, vol. 188(C).
    4. Jin, Zhumengmeng & Hobert, James P., 2022. "Dimension free convergence rates for Gibbs samplers for Bayesian linear mixed models," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 25-67.
    5. Wang, Xin & Roy, Vivekananda, 2018. "Analysis of the Pólya-Gamma block Gibbs sampler for Bayesian logistic linear mixed models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 251-256.
    6. Bryant Davis & James P. Hobert, 2021. "On the Convergence Complexity of Gibbs Samplers for a Family of Simple Bayesian Random Effects Models," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1323-1351, December.
    7. Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:28:y:2001:i:3:p:489-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.