IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v144y2022icp229-270.html
   My bibliography  Save this article

Asymptotic analysis of Poisson shot noise processes, and applications

Author

Listed:
  • Torrisi, Giovanni Luca
  • Leonardi, Emilio

Abstract

Poisson shot noise processes are natural generalizations of compound Poisson processes that have been widely applied in insurance, neuroscience, seismology, computer science and epidemiology. In this paper we study sharp deviations, fluctuations and the stable probability approximation of Poisson shot noise processes. Our achievements extend, improve and complement existing results in the literature. We apply the theoretical results to Poisson cluster point processes, including generalized linear Hawkes processes, and risk processes with delayed claims. Many examples are discussed in detail.

Suggested Citation

  • Torrisi, Giovanni Luca & Leonardi, Emilio, 2022. "Asymptotic analysis of Poisson shot noise processes, and applications," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 229-270.
  • Handle: RePEc:eee:spapps:v:144:y:2022:i:c:p:229-270
    DOI: 10.1016/j.spa.2021.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921001897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stabile, Gabriele & Torrisi, Giovanni Luca, 2010. "Large deviations of Poisson shot noise processes under heavy tail semi-exponential conditions," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1200-1209, August.
    2. Torrisi, G. L., 2004. "Simulating the ruin probability of risk processes with delay in claim settlement," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 225-244, August.
    3. Macci, Claudio & Torrisi, Giovanni Luca, 2004. "Asymptotic results for perturbed risk processes with delayed claims," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 307-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirchner, Matthias & Torrisi, Giovanni Luca, 2023. "Fluctuations and precise deviations of cumulative INAR time series," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 1-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stabile, Gabriele & Torrisi, Giovanni Luca, 2010. "Large deviations of Poisson shot noise processes under heavy tail semi-exponential conditions," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1200-1209, August.
    2. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    3. Jang, Jiwook & Dassios, Angelos & Zhao, Hongbiao, 2018. "Moments of renewal shot-noise processes and their applications," LSE Research Online Documents on Economics 87428, London School of Economics and Political Science, LSE Library.
    4. Beghin, Luisa & Macci, Claudio, 2022. "Non-central moderate deviations for compound fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 185(C).
    5. Chengguo Weng & Yi Zhang & Ken Seng Tan, 2013. "Tail Behavior of Poisson Shot Noise Processes under Heavy-tailed Shocks and Actuarial Applications," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 655-682, September.
    6. Ahn, Soohan & Badescu, Andrei L. & Cheung, Eric C.K. & Kim, Jeong-Rae, 2018. "An IBNR–RBNS insurance risk model with marked Poisson arrivals," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 26-42.
    7. Bohan Chen & Jose Blanchet & Chang-Han Rhee & Bert Zwart, 2019. "Efficient Rare-Event Simulation for Multiple Jump Events in Regularly Varying Random Walks and Compound Poisson Processes," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 919-942, August.
    8. Shen, Xinmei & Zhang, Yi, 2012. "Moderate deviations for a risk model based on the customer-arrival process," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 116-122.
    9. Lingjiong Zhu, 2023. "A delayed dual risk model," Papers 2301.06450, arXiv.org.
    10. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," LSE Research Online Documents on Economics 64051, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:144:y:2022:i:c:p:229-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.