Concentration inequalities for additive functionals: A martingale approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2021.01.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Guillin, Arnaud, 2001. "Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 287-313, April.
- Dzhaparidze, K. & van Zanten, J. H., 2001. "On Bernstein-type inequalities for martingales," Stochastic Processes and their Applications, Elsevier, vol. 93(1), pages 109-117, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kanaya, Shin & Kristensen, Dennis, 2016.
"Estimation Of Stochastic Volatility Models By Nonparametric Filtering,"
Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
- Shin Kanaya & Dennis Kristensen, 2010. "Estimation of Stochastic Volatility Models by Nonparametric Filtering," CREATES Research Papers 2010-67, Department of Economics and Business Economics, Aarhus University.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers 09/15, Institute for Fiscal Studies.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers CWP09/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jiang Hui & Xu Lihu & Yang Qingshan, 2024. "Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3015-3054, November.
- Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
- Sason, Igal, 2013. "Tightened exponential bounds for discrete-time conditionally symmetric martingales with bounded jumps," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1928-1936.
- Löcherbach, Eva & Orlandi, Enza, 2011. "Neighborhood radius estimation for variable-neighborhood random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(9), pages 2151-2185, September.
- Ruijun Bu & Jihyun Kim & Bin Wang, 2020. "Uniform and Lp Convergences of Nonparametric Estimation for Diffusion Models," Working Papers 202021, University of Liverpool, Department of Economics.
- Fan, Xiequan & Grama, Ion & Liu, Quansheng, 2012. "Hoeffding’s inequality for supermartingales," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3545-3559.
- Guillin, A. & Liptser, R., 2005. "MDP for integral functionals of fast and slow processes with averaging," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1187-1207, July.
- Michael Diether, 2012. "Wavelet estimation in diffusions with periodicity," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 257-284, October.
- Reinhard Höpfner & Yury Kutoyants, 2010. "Estimating discontinuous periodic signals in a time inhomogeneous diffusion," Statistical Inference for Stochastic Processes, Springer, vol. 13(3), pages 193-230, October.
- Naiqi Liu & Vladimir V. Ulyanov & Hanchao Wang, 2022. "On De la Peña Type Inequalities for Point Processes," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
- Djellout, H. & Guillin, A., 2001. "Moderate deviations for Markov chains with atom," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 203-217, October.
- Ganguly, Arnab & Sundar, P., 2021. "Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 74-110.
- Christensen, Kim & Oomen, Roel & Renò, Roberto, 2022. "The drift burst hypothesis," Journal of Econometrics, Elsevier, vol. 227(2), pages 461-497.
- Douc, Randal & Fort, Gersende & Guillin, Arnaud, 2009. "Subgeometric rates of convergence of f-ergodic strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 897-923, March.
More about this item
Keywords
Time average; Additive functional; Inhomogeneous functional; Concentration inequality; Time-inhomogeneous Markov process; Martingale;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:135:y:2021:i:c:p:103-138. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.