Weak convergence and invariant measure of a full discretization for parabolic SPDEs with non-globally Lipschitz coefficients
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2020.12.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Becker, Sebastian & Jentzen, Arnulf, 2019. "Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 28-69.
- Wang, Xiaojie, 2020. "An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6271-6299.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- di Nunno, Giulia & Ortiz–Latorre, Salvador & Petersson, Andreas, 2023. "SPDE bridges with observation noise and their spatial approximation," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 170-207.
- Chen, Chuchu & Dang, Tonghe & Hong, Jialin & Zhou, Tau, 2023. "CLT for approximating ergodic limit of SPDEs via a full discretization," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 1-41.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Junmei Wang & James Hoult & Yubin Yan, 2021. "Spatial Discretization for Stochastic Semi-Linear Subdiffusion Equations Driven by Fractionally Integrated Multiplicative Space-Time White Noise," Mathematics, MDPI, vol. 9(16), pages 1-38, August.
- Wang, Xiaojie, 2020. "An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6271-6299.
- Chen, Chuchu & Dang, Tonghe & Hong, Jialin & Zhou, Tau, 2023. "CLT for approximating ergodic limit of SPDEs via a full discretization," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 1-41.
More about this item
Keywords
Weak convergence; Invariant measure; Kolmogorov equation; Malliavin calculus;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:134:y:2021:i:c:p:55-93. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.