IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v134y2021icp55-93.html
   My bibliography  Save this article

Weak convergence and invariant measure of a full discretization for parabolic SPDEs with non-globally Lipschitz coefficients

Author

Listed:
  • Cui, Jianbo
  • Hong, Jialin
  • Sun, Liying

Abstract

We propose a full discretization to approximate the invariant measure numerically for parabolic stochastic partial differential equations (SPDEs) with non-globally Lipschitz coefficients. We present a priori estimates and regularity estimates of the numerical solution via a variational approach and Malliavin calculus. Under certain hypotheses, we present the time-independent regularity estimates for the corresponding Kolmogorov equation and the time-independent weak convergence analysis for the full discretization. Furthermore, we show that the V-uniformly ergodic invariant measure of the original system is approximated by this full discretization with weak convergence rate. Numerical experiments verify theoretical findings.

Suggested Citation

  • Cui, Jianbo & Hong, Jialin & Sun, Liying, 2021. "Weak convergence and invariant measure of a full discretization for parabolic SPDEs with non-globally Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 55-93.
  • Handle: RePEc:eee:spapps:v:134:y:2021:i:c:p:55-93
    DOI: 10.1016/j.spa.2020.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920304269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Becker, Sebastian & Jentzen, Arnulf, 2019. "Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 28-69.
    2. Wang, Xiaojie, 2020. "An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6271-6299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. di Nunno, Giulia & Ortiz–Latorre, Salvador & Petersson, Andreas, 2023. "SPDE bridges with observation noise and their spatial approximation," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 170-207.
    2. Chen, Chuchu & Dang, Tonghe & Hong, Jialin & Zhou, Tau, 2023. "CLT for approximating ergodic limit of SPDEs via a full discretization," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 1-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junmei Wang & James Hoult & Yubin Yan, 2021. "Spatial Discretization for Stochastic Semi-Linear Subdiffusion Equations Driven by Fractionally Integrated Multiplicative Space-Time White Noise," Mathematics, MDPI, vol. 9(16), pages 1-38, August.
    2. Chen, Chuchu & Dang, Tonghe & Hong, Jialin & Zhou, Tau, 2023. "CLT for approximating ergodic limit of SPDEs via a full discretization," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 1-41.
    3. Wang, Xiaojie, 2020. "An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6271-6299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:134:y:2021:i:c:p:55-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.