IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i1p28-69.html
   My bibliography  Save this article

Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations

Author

Listed:
  • Becker, Sebastian
  • Jentzen, Arnulf

Abstract

This article proposes and analyzes explicit and easily implementable temporal numerical approximation schemes for additive noise-driven stochastic partial differential equations (SPDEs) with polynomial nonlinearities such as, e.g., stochastic Ginzburg–Landauequations. We prove essentially sharp strong convergence rates for the considered approximation schemes. Our analysis is carried out for abstract stochastic evolution equations on separable Banach and Hilbert spaces including the above mentioned SPDEs as special cases. We also illustrate our strong convergence rate results by means of a numerical simulation in Matlab.

Suggested Citation

  • Becker, Sebastian & Jentzen, Arnulf, 2019. "Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 28-69.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:1:p:28-69
    DOI: 10.1016/j.spa.2018.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918300255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junmei Wang & James Hoult & Yubin Yan, 2021. "Spatial Discretization for Stochastic Semi-Linear Subdiffusion Equations Driven by Fractionally Integrated Multiplicative Space-Time White Noise," Mathematics, MDPI, vol. 9(16), pages 1-38, August.
    2. Cui, Jianbo & Hong, Jialin & Sun, Liying, 2021. "Weak convergence and invariant measure of a full discretization for parabolic SPDEs with non-globally Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 55-93.
    3. Wang, Xiaojie, 2020. "An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6271-6299.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:1:p:28-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.