IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v131y2021icp359-393.html
   My bibliography  Save this article

Optimal lower bounds on hitting probabilities for non-linear systems of stochastic fractional heat equations

Author

Listed:
  • Dalang, Robert C.
  • Pu, Fei

Abstract

We consider a system of d non-linear stochastic fractional heat equations in spatial dimension 1 driven by multiplicative d-dimensional space–time white noise. We establish a sharp Gaussian-type upper bound on the two-point probability density function of (u(s,y),u(t,x)). From this result, we deduce optimal lower bounds on hitting probabilities of the process {u(t,x):(t,x)∈[0,∞[×R} in the non-Gaussian case, in terms of Newtonian capacity, which is as sharp as that in the Gaussian case. This also improves the result in Dalang et al. (2009) for systems of classical stochastic heat equations. We also establish upper bounds on hitting probabilities of the solution in terms of Hausdorff measure.

Suggested Citation

  • Dalang, Robert C. & Pu, Fei, 2021. "Optimal lower bounds on hitting probabilities for non-linear systems of stochastic fractional heat equations," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 359-393.
  • Handle: RePEc:eee:spapps:v:131:y:2021:i:c:p:359-393
    DOI: 10.1016/j.spa.2020.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920303379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanz-Solé, Marta & Viles, Noèlia, 2018. "Systems of stochastic Poisson equations: Hitting probabilities," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1857-1888.
    2. Debbi, Latifa & Dozzi, Marco, 2005. "On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1764-1781, November.
    3. Wu, Dongsheng, 2011. "On the solution process for a stochastic fractional partial differential equation driven by space-time white noise," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1161-1172, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hinojosa-Calleja, Adrián, 2023. "Exact uniform modulus of continuity for q-isotropic Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 197(C).
    2. Lei Zhang & Yongsheng Ding & Kuangrong Hao & Liangjian Hu & Tong Wang, 2014. "Moment stability of fractional stochastic evolution equations with Poisson jumps," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1539-1547, July.
    3. Chen, Le & Hu, Yaozhong & Nualart, David, 2019. "Nonlinear stochastic time-fractional slow and fast diffusion equations on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5073-5112.
    4. Wu, Dongsheng, 2011. "On the solution process for a stochastic fractional partial differential equation driven by space-time white noise," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1161-1172, August.
    5. Yanmei Liu & Monzorul Khan & Yubin Yan, 2016. "Fourier Spectral Methods for Some Linear Stochastic Space-Fractional Partial Differential Equations," Mathematics, MDPI, vol. 4(3), pages 1-28, July.
    6. Junfeng Liu, 2023. "Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space," Journal of Theoretical Probability, Springer, vol. 36(1), pages 167-200, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:131:y:2021:i:c:p:359-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.