IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i6p1857-1888.html
   My bibliography  Save this article

Systems of stochastic Poisson equations: Hitting probabilities

Author

Listed:
  • Sanz-Solé, Marta
  • Viles, Noèlia

Abstract

We consider a d-dimensional random field u=(u(x),x∈D) that solves a system of elliptic stochastic equations on a bounded domain D⊂Rk, with additive white noise and spatial dimension k=1,2,3. Properties of u and its probability law are proved. For Gaussian solutions, using results from Dalang and Sanz-Solé (2009), we establish upper and lower bounds on hitting probabilities in terms of the Hausdorff measure and Bessel–Riesz capacity, respectively. This relies on precise estimates of the canonical distance of the process or, equivalently, on L2 estimates of increments of the Green function of the Laplace equation.

Suggested Citation

  • Sanz-Solé, Marta & Viles, Noèlia, 2018. "Systems of stochastic Poisson equations: Hitting probabilities," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1857-1888.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:6:p:1857-1888
    DOI: 10.1016/j.spa.2017.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917302053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hinojosa-Calleja, Adrián, 2023. "Exact uniform modulus of continuity for q-isotropic Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 197(C).
    2. Dalang, Robert C. & Pu, Fei, 2021. "Optimal lower bounds on hitting probabilities for non-linear systems of stochastic fractional heat equations," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 359-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:6:p:1857-1888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.