IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i8p5006-5036.html
   My bibliography  Save this article

Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method

Author

Listed:
  • Agarwal, Ankush
  • Claisse, Julien

Abstract

We study semi-linear elliptic PDEs with polynomial non-linearity in bounded domains and provide a probabilistic representation of their solution using branching diffusion processes. When the non-linearity involves the unknown function but not its derivatives, we extend previous results in the literature by showing that our probabilistic representation provides a solution to the PDE without assuming its existence. In the general case, we derive a new representation of the solution by using marked branching diffusion processes and automatic differentiation formulas to account for the non-linear gradient term. We consider several examples and estimate their solution by using the Monte Carlo method.

Suggested Citation

  • Agarwal, Ankush & Claisse, Julien, 2020. "Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5006-5036.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:5006-5036
    DOI: 10.1016/j.spa.2020.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920301071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Briand, Ph. & Delyon, B. & Hu, Y. & Pardoux, E. & Stoica, L., 2003. "Lp solutions of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 109-129, November.
    2. Rasulov, A. & Raimova, G. & Mascagni, M., 2010. "Monte Carlo solution of Cauchy problem for a nonlinear parabolic equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(6), pages 1118-1123.
    3. Emmanuel Gobet, 2004. "Revisiting the Greeks for European and American Options," World Scientific Book Chapters, in: Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), Stochastic Processes And Applications To Mathematical Finance, chapter 3, pages 53-71, World Scientific Publishing Co. Pte. Ltd..
    4. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    5. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2014. "A numerical algorithm for a class of BSDEs via the branching process," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1112-1140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Beck & Lukas Gonon & Arnulf Jentzen, 2024. "Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations," Partial Differential Equations and Applications, Springer, vol. 5(6), pages 1-47, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    2. Bouchard Bruno & Tan Xiaolu & Warin Xavier & Zou Yiyi, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    3. Christian Beck & Lukas Gonon & Arnulf Jentzen, 2024. "Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations," Partial Differential Equations and Applications, Springer, vol. 5(6), pages 1-47, December.
    4. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    5. Geiss, Stefan & Ylinen, Juha, 2020. "Weighted bounded mean oscillation applied to backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3711-3752.
    6. Weinan E & Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse, 2021. "Multilevel Picard iterations for solving smooth semilinear parabolic heat equations," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-31, December.
    7. Mastrolia, Thibaut, 2018. "Density analysis of non-Markovian BSDEs and applications to biology and finance," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 897-938.
    8. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2021. "Stability of backward stochastic differential equations: the general case," Papers 2107.11048, arXiv.org, revised Apr 2023.
    9. Pagès, Gilles & Sagna, Abass, 2018. "Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 847-883.
    10. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2014. "A numerical algorithm for a class of BSDEs via the branching process," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1112-1140.
    11. Gobet, Emmanuel & Makhlouf, Azmi, 2010. "-time regularity of BSDEs with irregular terminal functions," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1105-1132, July.
    12. Matoussi Anis & Sabbagh Wissal, 2016. "Numerical computation for backward doubly SDEs with random terminal time," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 229-258, September.
    13. Ren, Zhenjie & Tan, Xiaolu, 2017. "On the convergence of monotone schemes for path-dependent PDEs," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1738-1762.
    14. Geiss, Christel & Geiss, Stefan & Gobet, Emmanuel, 2012. "Generalized fractional smoothness and Lp-variation of BSDEs with non-Lipschitz terminal condition," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2078-2116.
    15. Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & Gang Liu, 2017. "Rare event simulation related to financial risks: efficient estimation and sensitivity analysis," Working Papers hal-01219616, HAL.
    16. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    17. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    18. Masaaki Fujii & Akihiko Takahshi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," CIRJE F-Series CIRJE-F-954, CIRJE, Faculty of Economics, University of Tokyo.
    19. Fan, ShengJun & Jiang, Long & Tian, DeJian, 2011. "One-dimensional BSDEs with finite and infinite time horizons," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 427-440, March.
    20. Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:5006-5036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.