IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i8p4746-4765.html
   My bibliography  Save this article

Backward stochastic differential equations with two barriers and generalized reflection

Author

Listed:
  • Falkowski, Adrian
  • Słomiński, Leszek

Abstract

We prove the existence and uniqueness of solutions of backward stochastic differential equations (BSDEs) with generalized reflection at time dependent càdlàg barriers. The reflection model we consider includes, as special cases, the standard reflection as well as the mirror reflection studied earlier in the theory of forward stochastic differential equations. We also show that the solution of BSDEs with generalized reflection corresponds to the value of an optimal stopping problem.

Suggested Citation

  • Falkowski, Adrian & Słomiński, Leszek, 2020. "Backward stochastic differential equations with two barriers and generalized reflection," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4746-4765.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:4746-4765
    DOI: 10.1016/j.spa.2020.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919303230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klimsiak, Tomasz & Rozkosz, Andrzej & Słomiński, Leszek, 2015. "Reflected BSDEs in time-dependent convex regions," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 571-596.
    2. Slominski, Leszek & Wojciechowski, Tomasz, 2010. "Stochastic differential equations with jump reflection at time-dependent barriers," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1701-1721, August.
    3. Lepeltier, J.-P. & Xu, M., 2005. "Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 58-66, November.
    4. Rozkosz, Andrzej & Słomiński, Leszek, 2012. "Lp solutions of reflected BSDEs under monotonicity condition," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3875-3900.
    5. Klimsiak, Tomasz & Rzymowski, Maurycy & Słomiński, Leszek, 2019. "Reflected BSDEs with regulated trajectories," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1153-1184.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klimsiak, Tomasz & Rzymowski, Maurycy & Słomiński, Leszek, 2019. "Reflected BSDEs with regulated trajectories," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1153-1184.
    2. Klimsiak, Tomasz, 2021. "Non-semimartingale solutions of reflected BSDEs and applications to Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 208-239.
    3. Imane Jarni & Youssef Ouknine, 2021. "On Reflection with Two-Sided Jumps," Journal of Theoretical Probability, Springer, vol. 34(4), pages 1811-1830, December.
    4. Klimsiak, Tomasz & Rozkosz, Andrzej & Słomiński, Leszek, 2015. "Reflected BSDEs in time-dependent convex regions," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 571-596.
    5. Kim, Mun-Chol & O, Hun, 2021. "A general comparison theorem for reflected BSDEs," Statistics & Probability Letters, Elsevier, vol. 173(C).
    6. Marzougue, Mohamed, 2021. "Monotonic limit theorem for BSDEs with regulated trajectories," Statistics & Probability Letters, Elsevier, vol. 176(C).
    7. Monia Karouf, 2019. "Reflected and Doubly Reflected Backward Stochastic Differential Equations with Time-Delayed Generators," Journal of Theoretical Probability, Springer, vol. 32(1), pages 216-248, March.
    8. Roxana Dumitrescu & Romuald Elie & Wissal Sabbagh & Chao Zhou, 2017. "A new Mertens decomposition of $\mathscr{Y}^{g,\xi}$-submartingale systems. Application to BSDEs with weak constraints at stopping times," Papers 1708.05957, arXiv.org, revised May 2023.
    9. Choukroun, Sébastien & Cosso, Andrea & Pham, Huyên, 2015. "Reflected BSDEs with nonpositive jumps, and controller-and-stopper games," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 597-633.
    10. Aazizi, Soufiane & El Mellali, Tarik & Fakhouri, Imade & Ouknine, Youssef, 2018. "Optimal switching problem and related system of BSDEs with left-Lipschitz coefficients and mixed reflections," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 70-78.
    11. Klimsiak, Tomasz, 2015. "Reflected BSDEs on filtered probability spaces," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4204-4241.
    12. Irina Penner & Anthony Réveillac, 2015. "Risk measures for processes and BSDEs," Finance and Stochastics, Springer, vol. 19(1), pages 23-66, January.
    13. Neda Esmaeeli & Peter Imkeller, 2015. "American Options with Asymmetric Information and Reflected BSDE," Papers 1505.05046, arXiv.org, revised Aug 2017.
    14. Ren, Yong & Hu, Lanying, 2007. "Reflected backward stochastic differential equations driven by Lévy processes," Statistics & Probability Letters, Elsevier, vol. 77(15), pages 1559-1566, September.
    15. Marzougue, Mohamed, 2020. "A note on optional Snell envelopes and reflected backward SDEs," Statistics & Probability Letters, Elsevier, vol. 165(C).
    16. Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.
    17. Thomas Kruse & Philipp Strack, 2019. "An Inverse Optimal Stopping Problem for Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 423-439, May.
    18. Shige Peng & Mingyu Xu, 2006. "Reflected BSDE with a Constraint and a New Doob-Meyer Nonlinear Decomposition," Papers math/0611869, arXiv.org, revised Jul 2008.
    19. Falkowski, Adrian & Słomiński, Leszek, 2022. "SDEs with two reflecting barriers driven by semimartingales and processes with bounded p-variation," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 164-186.
    20. Grigorova, Miryana & Imkeller, Peter & Ouknine, Youssef & Quenez, Marie-Claire, 2020. "Optimal stopping with f-expectations: The irregular case," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1258-1288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:4746-4765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.