IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i7p4028-4061.html
   My bibliography  Save this article

Path-space moderate deviations for a class of Curie–Weiss models with dissipation

Author

Listed:
  • Collet, Francesca
  • Kraaij, Richard C.

Abstract

We modify the spin-flip dynamics of the Curie–Weiss model with dissipation in Dai Pra, Fischer and Regoli (2013) by considering arbitrary transition rates and we analyze the phase-portrait as well as the dynamics of moderate fluctuations for macroscopic observables. We obtain path-space moderate deviation principles via a general analytic approach based on the convergence of non-linear generators and uniqueness of viscosity solutions for associated Hamilton–Jacobi equations. The moderate asymptotics depend crucially on the phase we are considering and, moreover, their behavior may be influenced by the choice of the rates.

Suggested Citation

  • Collet, Francesca & Kraaij, Richard C., 2020. "Path-space moderate deviations for a class of Curie–Weiss models with dissipation," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4028-4061.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4028-4061
    DOI: 10.1016/j.spa.2019.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918306161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ditlevsen, Susanne & Löcherbach, Eva, 2017. "Multi-class oscillating systems of interacting neurons," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1840-1869.
    2. Dai Pra, Paolo & Tovazzi, Daniele, 2019. "The dynamics of critical fluctuations in asymmetric Curie–Weiss models," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 1060-1095.
    3. Paolo Dai Pra & Elena Sartori & Marco Tolotti, 2019. "Climb on the Bandwagon: Consensus and Periodicity in a Lifetime Utility Model with Strategic Interactions," Dynamic Games and Applications, Springer, vol. 9(4), pages 1061-1075, December.
    4. Kraaij, Richard C. & Redig, Frank & Versendaal, Rik, 2019. "Classical large deviation theorems on complete Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4294-4334.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duval, Céline & Luçon, Eric & Pouzat, Christophe, 2022. "Interacting Hawkes processes with multiplicative inhibition," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 180-226.
    2. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    3. Heesen, Sophie & Stannat, Wilhelm, 2021. "Fluctuation limits for mean-field interacting nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 280-297.
    4. Chevallier, J. & Duarte, A. & Löcherbach, E. & Ost, G., 2019. "Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 1-27.
    5. Pigato, Paolo, 2022. "Density estimates and short-time asymptotics for a hypoelliptic diffusion process," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 117-142.
    6. Chevallier, Julien & Ost, Guilherme, 2020. "Fluctuations for spatially extended Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5510-5542.
    7. Kraaij, Richard C. & Mahé, Louis, 2020. "Well-posedness of Hamilton–Jacobi equations in population dynamics and applications to large deviations," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5453-5491.
    8. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    9. Pfaffelhuber, P. & Rotter, S. & Stiefel, J., 2022. "Mean-field limits for non-linear Hawkes processes with excitation and inhibition," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 57-78.
    10. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.
    11. Simon Clinet, 2022. "Quasi-likelihood analysis for marked point processes and application to marked Hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 189-225, July.
    12. Holbach, Simon, 2020. "Positive Harris recurrence for degenerate diffusions with internal variables and randomly perturbed time-periodic input," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6965-7003.
    13. Schmutz, Valentin, 2022. "Mean-field limit of age and leaky memory dependent Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 39-59.
    14. Charlotte Dion & Sarah Lemler, 2020. "Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 489-515, October.
    15. Paolo Dai Pra & Elena Sartori & Marco Tolotti, 2023. "Polarization and Coherence in Mean Field Games Driven by Private and Social Utility," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 49-85, July.
    16. Agathe-Nerine, Zoé, 2022. "Multivariate Hawkes processes on inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 86-148.
    17. Anna Melnykova, 2020. "Parametric inference for hypoelliptic ergodic diffusions with full observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 595-635, October.
    18. Paolo Dai Pra & Elena Sartori & Marco Tolotti, 2019. "Climb on the Bandwagon: Consensus and Periodicity in a Lifetime Utility Model with Strategic Interactions," Dynamic Games and Applications, Springer, vol. 9(4), pages 1061-1075, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4028-4061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.