IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i11p4294-4334.html
   My bibliography  Save this article

Classical large deviation theorems on complete Riemannian manifolds

Author

Listed:
  • Kraaij, Richard C.
  • Redig, Frank
  • Versendaal, Rik

Abstract

We generalize classical large deviation theorems to the setting of complete, smooth Riemannian manifolds. We prove the analogue of Mogulskii’s theorem for geodesic random walks via a general approach using viscosity solutions for Hamilton–Jacobi equations. As a corollary, we also obtain the analogue of Cramér’s theorem. The approach also provides a new proof of Schilder’s theorem. Additionally, we provide a proof of Schilder’s theorem by using an embedding into Euclidean space, together with Freidlin–Wentzell theory.

Suggested Citation

  • Kraaij, Richard C. & Redig, Frank & Versendaal, Rik, 2019. "Classical large deviation theorems on complete Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4294-4334.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:11:p:4294-4334
    DOI: 10.1016/j.spa.2018.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918306781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Collet, Francesca & Kraaij, Richard C., 2017. "Dynamical moderate deviations for the Curie–Weiss model," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2900-2925.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Collet, Francesca & Kraaij, Richard C., 2020. "Path-space moderate deviations for a class of Curie–Weiss models with dissipation," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4028-4061.
    2. Kraaij, Richard C. & Mahé, Louis, 2020. "Well-posedness of Hamilton–Jacobi equations in population dynamics and applications to large deviations," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5453-5491.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:11:p:4294-4334. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.