IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i9p3239-3260.html
   My bibliography  Save this article

Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment

Author

Listed:
  • Mallein, Bastien
  • Miłoś, Piotr

Abstract

The behavior of the maximal displacement of a supercritical branching random walk has been a subject of intense studies for a long time. But only recently the case of time-inhomogeneous branching has gained focus. The contribution of this paper is to analyze a time-inhomogeneous model with two levels of randomness. In the first step a sequence of branching laws is sampled independently according to a distribution on the set of point measures’ laws. Conditionally on the realization of this sequence (called environment) we define a branching random walk and find the asymptotic behavior of its maximal particle. It is of the form Vn−φlogn+oP(logn), where Vn is a function of the environment that behaves as a random walk and φ>0 is a deterministic constant, which turns out to be bigger than the usual logarithmic correction of the homogeneous branching random walk.

Suggested Citation

  • Mallein, Bastien & Miłoś, Piotr, 2019. "Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3239-3260.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:9:p:3239-3260
    DOI: 10.1016/j.spa.2018.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918304794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yueyun & Yoshida, Nobuo, 2009. "Localization for branching random walks in random environment," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1632-1651, May.
    2. Mallein, Bastien, 2015. "Maximal displacement of a branching random walk in time-inhomogeneous environment," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3958-4019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chunmao & Liu, Quansheng, 2024. "Limit theorems for a branching random walk in a random or varying environment," Stochastic Processes and their Applications, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Comets & Nobuo Yoshida, 2011. "Branching Random Walks in Space–Time Random Environment: Survival Probability, Global and Local Growth Rates," Journal of Theoretical Probability, Springer, vol. 24(3), pages 657-687, September.
    2. Bezborodov, Viktor & Di Persio, Luca & Krueger, Tyll, 2021. "The continuous-time frog model can spread arbitrarily fast," Statistics & Probability Letters, Elsevier, vol. 172(C).
    3. Gerold Alsmeyer & Fabian Buckmann, 2018. "Fluctuation Theory for Markov Random Walks," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2266-2342, December.
    4. Gao, Zhiqiang & Liu, Quansheng, 2016. "Exact convergence rates in central limit theorems for a branching random walk with a random environment in time," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2634-2664.
    5. Huang, Chunmao & Liu, Quansheng, 2024. "Limit theorems for a branching random walk in a random or varying environment," Stochastic Processes and their Applications, Elsevier, vol. 172(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:9:p:3239-3260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.