IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v125y2015i10p3958-4019.html
   My bibliography  Save this article

Maximal displacement of a branching random walk in time-inhomogeneous environment

Author

Listed:
  • Mallein, Bastien

Abstract

Consider a branching random walk evolving in a macroscopic time-inhomogeneous environment, that scales with the length n of the process under study. We compute the first two terms of the asymptotic of the maximal displacement at time n. The coefficient of the first (ballistic) order is obtained as the solution of an optimization problem, while the second term, of order n1/3, comes from time-inhomogeneous random walk estimates, that may be of independent interest. This result partially answers a conjecture of Fang and Zeitouni. Same techniques are used to obtain the asymptotic of other quantities, such as the consistent maximal displacement.

Suggested Citation

  • Mallein, Bastien, 2015. "Maximal displacement of a branching random walk in time-inhomogeneous environment," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3958-4019.
  • Handle: RePEc:eee:spapps:v:125:y:2015:i:10:p:3958-4019
    DOI: 10.1016/j.spa.2015.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915001337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aïdékon, Elie & Jaffuel, Bruno, 2011. "Survival of branching random walks with absorption," Stochastic Processes and their Applications, Elsevier, vol. 121(9), pages 1901-1937, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mallein, Bastien & Miłoś, Piotr, 2019. "Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3239-3260.
    2. Bezborodov, Viktor & Di Persio, Luca & Krueger, Tyll, 2021. "The continuous-time frog model can spread arbitrarily fast," Statistics & Probability Letters, Elsevier, vol. 172(C).
    3. Gerold Alsmeyer & Fabian Buckmann, 2018. "Fluctuation Theory for Markov Random Walks," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2266-2342, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madaule, Thomas, 2016. "First order transition for the branching random walk at the critical parameter," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 470-502.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:125:y:2015:i:10:p:3958-4019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.