IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i5p1697-1725.html
   My bibliography  Save this article

Generalized refracted Lévy process and its application to exit problem

Author

Listed:
  • Noba, Kei
  • Yano, Kouji

Abstract

Generalizing Kyprianou–Loeffen’s refracted Lévy processes, we define a new refracted Lévy process which is a Markov process whose positive and negative motions are Lévy processes different from each other. To construct it we utilize the excursion theory. We study its exit problem and the potential measures of the killed processes. We also discuss approximation problem.

Suggested Citation

  • Noba, Kei & Yano, Kouji, 2019. "Generalized refracted Lévy process and its application to exit problem," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1697-1725.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:5:p:1697-1725
    DOI: 10.1016/j.spa.2018.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491830276X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhen-Qing & Fukushima, Masatoshi, 2015. "One-point reflection," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1368-1393.
    2. Avram, Florin & Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "Spectrally negative Lévy processes with Parisian reflection below and classical reflection above," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 255-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irmina Czarna & Adam Kaszubowski, 2020. "Optimality of Impulse Control Problem in Refracted Lévy Model with Parisian Ruin and Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 982-1007, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    2. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    3. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.
    4. Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "American options under periodic exercise opportunities," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 92-101.
    5. Chen, Zhen-Qing & Fukushima, Masatoshi, 2018. "Stochastic Komatu–Loewner evolutions and BMD domain constant," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 545-594.
    6. Li, Liping & Li, Xiaodan, 2020. "Dirichlet forms and polymer models based on stable processes," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5940-5972.
    7. Dong, Hua & Zhou, Xiaowen, 2019. "On a spectrally negative Lévy risk process with periodic dividends and capital injections," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    8. Noba, Kei & Pérez, José-Luis & Yamazaki, Kazutoshi & Yano, Kouji, 2018. "On optimal periodic dividend strategies for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 29-44.
    9. Zbigniew Palmowski & Jos'e Luis P'erez & Budhi Arta Surya & Kazutoshi Yamazaki, 2019. "The Leland-Toft optimal capital structure model under Poisson observations," Papers 1904.03356, arXiv.org, revised Mar 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:5:p:1697-1725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.