IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i9p2979-3005.html
   My bibliography  Save this article

Extremes of q-Ornstein–Uhlenbeck processes

Author

Listed:
  • Wang, Yizao

Abstract

Two limit theorems are established on the extremes of a family of stationary Markov processes, known as q-Ornstein–Uhlenbeck processes with q∈(−1,1). Both results are crucially based on the weak convergence of the tangent process at the lower boundary of the domain of the process, a positive self-similar Markov process little investigated so far in the literature. The first result is the asymptotic excursion probability established by the double-sum method, with an explicit formula for the Pickands constant in this context. The second result is a Brown–Resnick-type limit theorem on the minimum process of i.i.d. copies of the q-Ornstein–Uhlenbeck process: with appropriate scalings in both time and magnitude, a new semi-min-stable process arises in the limit.

Suggested Citation

  • Wang, Yizao, 2018. "Extremes of q-Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2979-3005.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:9:p:2979-3005
    DOI: 10.1016/j.spa.2017.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917302685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engelke, S. & Kabluchko, Z. & Schlather, M., 2011. "An equivalent representation of the Brown-Resnick process," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1150-1154, August.
    2. Kabluchko, Zakhar, 2009. "Extremes of space-time Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 119(11), pages 3962-3980, November.
    3. Engelke, Sebastian & Kabluchko, Zakhar, 2015. "Max-stable processes and stationary systems of Lévy particles," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4272-4299.
    4. Cheng, Dan, 2016. "Excursion probability of certain non-centered smooth Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 883-905.
    5. Kabluchko, Zakhar & Schlather, Martin, 2010. "Ergodic properties of max-infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 281-295, March.
    6. Wang, Yizao, 2016. "Large jumps of q-Ornstein–Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 110-116.
    7. Stoev, Stilian A., 2008. "On the ergodicity and mixing of max-stable processes," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1679-1705, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Linjun & Zheng, Shengchao & Tan, Zhongquan, 2021. "Limit theorem on the pointwise maxima of minimum of vector-valued Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard A. Davis & Claudia Klüppelberg & Christina Steinkohl, 2013. "Statistical inference for max-stable processes in space and time," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 791-819, November.
    2. Dombry, Clément & Kabluchko, Zakhar, 2017. "Ergodic decompositions of stationary max-stable processes in terms of their spectral functions," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1763-1784.
    3. Parthanil Roy, 2017. "Maxima of stable random fields, nonsingular actions and finitely generated abelian groups: A survey," Indian Journal of Pure and Applied Mathematics, Springer, vol. 48(4), pages 513-540, December.
    4. Wang, Yizao & Stoev, Stilian A., 2010. "On the association of sum- and max-stable processes," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 480-488, March.
    5. Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
    6. Das, Bikramjit & Engelke, Sebastian & Hashorva, Enkelejd, 2015. "Extremal behavior of squared Bessel processes attracted by the Brown–Resnick process," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 780-796.
    7. Tianshi Lu & Chunsheng Ma, 2020. "Isotropic Covariance Matrix Functions on Compact Two-Point Homogeneous Spaces," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1630-1656, September.
    8. Lan, Xiaohong & Xiao, Yimin, 2018. "Strong local nondeterminism of spherical fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 44-50.
    9. Qiao, Wanli, 2021. "Extremes of locally stationary Gaussian and chi fields on manifolds," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 166-192.
    10. Chunsheng Ma & Anatoliy Malyarenko, 2020. "Time-Varying Isotropic Vector Random Fields on Compact Two-Point Homogeneous Spaces," Journal of Theoretical Probability, Springer, vol. 33(1), pages 319-339, March.
    11. Wenqiang Sun & Yuhao Hong & Yanhui Wang, 2016. "Operation Optimization of Steam Accumulators as Thermal Energy Storage and Buffer Units," Energies, MDPI, vol. 10(1), pages 1-16, December.
    12. Dombry, Clément & Eyi-Minko, Frédéric, 2012. "Strong mixing properties of max-infinitely divisible random fields," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3790-3811.
    13. Hashorva, Enkelejd, 2018. "Representations of max-stable processes via exponential tilting," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2952-2978.
    14. Koch, Erwan & Dombry, Clément & Robert, Christian Y., 2019. "A central limit theorem for functions of stationary max-stable random fields on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3406-3430.
    15. Ji, Lanpeng & Liu, Peng & Robert, Stephan, 2019. "Tail asymptotic behavior of the supremum of a class of chi-square processes," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    16. Enkelejd Hashorva & Zuoxiang Peng & Zhichao Weng, 2016. "Higher-order expansions of distributions of maxima in a Hüsler-Reiss model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 181-196, March.
    17. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    18. Engelke, Sebastian & Kabluchko, Zakhar, 2015. "Max-stable processes and stationary systems of Lévy particles," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4272-4299.
    19. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    20. Padoan, Simone A. & Bevilacqua, Moreno, 2015. "Analysis of Random Fields Using CompRandFld," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i09).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:9:p:2979-3005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.