IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i12p3913-3934.html
   My bibliography  Save this article

A sharp adaptive confidence ball for self-similar functions

Author

Listed:
  • Nickl, Richard
  • Szabó, Botond

Abstract

In the nonparametric Gaussian sequence space model an ℓ2-confidence ball Cn is constructed that adapts to unknown smoothness and Sobolev-norm of the infinite-dimensional parameter to be estimated. The confidence ball has exact and honest asymptotic coverage over appropriately defined ‘self-similar’ parameter spaces. It is shown by information-theoretic methods that this ‘self-similarity’ condition is weakest possible.

Suggested Citation

  • Nickl, Richard & Szabó, Botond, 2016. "A sharp adaptive confidence ball for self-similar functions," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3913-3934.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:12:p:3913-3934
    DOI: 10.1016/j.spa.2016.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916300394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Tony Cai & Mark Low & Zongming Ma, 2014. "Adaptive Confidence Bands for Nonparametric Regression Functions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1054-1070, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
    2. Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
    3. Ali Al-Sharadqah & Majid Mojirsheibani, 2020. "A simple approach to construct confidence bands for a regression function with incomplete data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 81-99, March.
    4. Susanne M Schennach, 2020. "A Bias Bound Approach to Non-parametric Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(5), pages 2439-2472.
    5. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    6. Koohyun Kwon & Soonwoo Kwon, 2020. "Adaptive Inference in Multivariate Nonparametric Regression Models Under Monotonicity," Papers 2011.14219, arXiv.org.
    7. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.
    8. Li Cai & Suojin Wang, 2021. "Global statistical inference for the difference between two regression mean curves with covariates possibly partially missing," Statistical Papers, Springer, vol. 62(6), pages 2573-2602, December.
    9. Timothy B. Armstrong & Michal Koles'ar & Mikkel Plagborg-M{o}ller, 2020. "Robust Empirical Bayes Confidence Intervals," Papers 2004.03448, arXiv.org, revised May 2022.

    More about this item

    Keywords

    Adaptation; Confidence sets;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:12:p:3913-3934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.