Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in C1,η open sets
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2014.04.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sztonyk, Pawel, 2011. "Transition density estimates for jump Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1245-1265, June.
- Andrew Matacz, 2000. "Financial Modeling And Option Theory With The Truncated Levy Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 143-160.
- Kim, Panki & Song, Renming & Vondracek, Zoran, 2009. "Boundary Harnack principle for subordinate Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1601-1631, May.
- Kim, Panki & Song, Renming & Vondraček, Zoran, 2014. "Global uniform boundary Harnack principle with explicit decay rate and its application," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 235-267.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Grzywny, Tomasz & Kim, Kyung-Youn & Kim, Panki, 2020. "Estimates of Dirichlet heat kernel for symmetric Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 431-470.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Grzywny, Tomasz & Kwaśnicki, Mateusz, 2018. "Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 1-38.
- Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
- Kim, Panki & Song, Renming & Vondraček, Zoran, 2016. "Minimal thinness with respect to subordinate killed Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1226-1263.
- Bogdan, Krzysztof & Grzywny, Tomasz & Ryznar, Michał, 2014. "Dirichlet heat kernel for unimodal Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3612-3650.
- Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
- Janecskó, Balázs, 2000. "Idősor-modellezés és opcióárazás csonkolt Lévy-eloszlással [Time-series modelling and option pricing with a truncated Lévy distribution]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 899-917.
- Kwaśnicki, Mateusz & Małecki, Jacek & Ryznar, Michał, 2013. "First passage times for subordinate Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1820-1850.
- Alvaro Cartea, 2005. "Dynamic Hedging of Financial Instruments When the Underlying Follows a Non-Gaussian Process," Birkbeck Working Papers in Economics and Finance 0508, Birkbeck, Department of Economics, Mathematics & Statistics.
- Wolff, Christian & Lehnert, Thorsten, 2001. "Modelling Scale-Consistent VaR with the Truncated Lévy Flight," CEPR Discussion Papers 2711, C.E.P.R. Discussion Papers.
- Lehnert, Thorsten & Wolff, Christian C. P., 2004. "Scale-consistent Value-at-Risk," Finance Research Letters, Elsevier, vol. 1(2), pages 127-134, June.
- Duffy, Ken & Lobunets, Olena & Suhov, Yuri, 2007. "Loss aversion, large deviation preferences and optimal portfolio weights for some classes of return processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 408-422.
- Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2012. "High-order short-time expansions for ATM option prices of exponential L\'evy models," Papers 1208.5520, arXiv.org, revised Apr 2014.
- Ramos, Antônio M.T. & Carvalho, J.A. & Vasconcelos, G.L., 2016. "Exponential model for option prices: Application to the Brazilian market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 161-168.
- Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
- Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010.
"Models for heavy-tailed asset returns,"
SFB 649 Discussion Papers
2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Szymon Borak & Adam Misiorek & Rafal Weron, 2010. "Models for Heavy-tailed Asset Returns," HSC Research Reports HSC/10/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Borak, Szymon & Misiorek, Adam & Weron, Rafal, 2010. "Models for Heavy-tailed Asset Returns," MPRA Paper 25494, University Library of Munich, Germany.
- Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019.
"Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
- Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2018. "Option Pricing with Heavy-Tailed Distributions of Logarithmic Returns," Papers 1807.01756, arXiv.org, revised Apr 2019.
- Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
- Farouk Mselmi, 2022. "Generalized linear model for subordinated Lévy processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 772-801, June.
- Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
- Vondraček, Zoran & Wagner, Vanja, 2018. "On purely discontinuous additive functionals of subordinate Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 707-725.
More about this item
Keywords
Dirichlet form; Jump process; Jumping kernel; Markov process; Heat kernel; Dirichlet heat kernel; Transition density; Lévy system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:9:p:3055-3083. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.