IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i3p764-795.html
   My bibliography  Save this article

Potential theory of subordinate Brownian motions with Gaussian components

Author

Listed:
  • Kim, Panki
  • Song, Renming
  • Vondraček, Zoran

Abstract

In this paper we study a subordinate Brownian motion with a Gaussian component and a rather general discontinuous part. The assumption on the subordinator is that its Laplace exponent is a complete Bernstein function with a Lévy density satisfying a certain growth condition near zero. The main result is a boundary Harnack principle with explicit boundary decay rate for non-negative harmonic functions of the process in C1,1 open sets. As a consequence of the boundary Harnack principle, we establish sharp two-sided estimates on the Green function of the subordinate Brownian motion in any bounded C1,1 open set D and identify the Martin boundary of D with respect to the subordinate Brownian motion with the Euclidean boundary.

Suggested Citation

  • Kim, Panki & Song, Renming & Vondraček, Zoran, 2013. "Potential theory of subordinate Brownian motions with Gaussian components," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 764-795.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:3:p:764-795
    DOI: 10.1016/j.spa.2012.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912002475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhen-Qing & Kumagai, Takashi, 2003. "Heat kernel estimates for stable-like processes on d-sets," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 27-62, November.
    2. Kim, Panki & Song, Renming & Vondracek, Zoran, 2009. "Boundary Harnack principle for subordinate Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1601-1631, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhen-Qing & Wang, Jie-Ming, 2022. "Boundary Harnack principle for diffusion with jumps," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 342-395.
    2. Liu, Rongli & Ren, Yan-Xia & Song, Renming, 2022. "Convergence rate for a class of supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 286-327.
    3. Ren, Yan-Xia & Song, Renming & Sun, Zhenyao, 2020. "Limit theorems for a class of critical superprocesses with stable branching," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4358-4391.
    4. Grzywny, Tomasz & Kwaśnicki, Mateusz, 2018. "Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 1-38.
    5. Fotopoulos, Stergios & Jandhyala, Venkata & Wang, Jun, 2015. "On the joint distribution of the supremum functional and its last occurrence for subordinated linear Brownian motion," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 149-156.
    6. Kim, Panki & Song, Renming & Vondraček, Zoran, 2014. "Global uniform boundary Harnack principle with explicit decay rate and its application," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 235-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhen-Qing & Kim, Panki & Song, Renming, 2011. "Green function estimates for relativistic stable processes in half-space-like open sets," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1148-1172, May.
    2. Feng-Yu Wang & Jian Wang, 2015. "Functional Inequalities for Stable-Like Dirichlet Forms," Journal of Theoretical Probability, Springer, vol. 28(2), pages 423-448, June.
    3. Haruna Okamura & Toshihiro Uemura, 2021. "On Symmetric Stable-Type Processes with Degenerate/Singular Lévy Densities," Journal of Theoretical Probability, Springer, vol. 34(2), pages 809-826, June.
    4. Wang, Linlin & Xie, Longjie & Zhang, Xicheng, 2015. "Derivative formulae for SDEs driven by multiplicative α-stable-like processes," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 867-885.
    5. Kwaśnicki, Mateusz & Małecki, Jacek & Ryznar, Michał, 2013. "First passage times for subordinate Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1820-1850.
    6. Chen, Xin & Chen, Zhen-Qing & Wang, Jian, 2020. "Heat kernel for non-local operators with variable order," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3574-3647.
    7. Kaleta, Kamil & Pietruska-Pałuba, Katarzyna, 2018. "Lifschitz singularity for subordinate Brownian motions in presence of the Poissonian potential on the Sierpiński gasket," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3897-3939.
    8. Jacob, Niels & Potrykus, Alexander & Wu, Jiang-Lun, 2010. "Solving a non-linear stochastic pseudo-differential equation of Burgers type," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2447-2467, December.
    9. Böttcher, Björn & Schilling, René L. & Wang, Jian, 2011. "Constructions of coupling processes for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1201-1216, June.
    10. Chen, Xin & Wang, Jian, 2014. "Functional inequalities for nonlocal Dirichlet forms with finite range jumps or large jumps," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 123-153.
    11. Kim, Kyung-Youn & Wang, Lidan, 2022. "Heat kernel bounds for a large class of Markov process with singular jump," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 165-203.
    12. Renming Song, 2006. "Estimates on the Transition Densities of Girsanov Transforms of Symmetric Stable Processes," Journal of Theoretical Probability, Springer, vol. 19(2), pages 487-507, June.
    13. Bass, Richard F. & Tang, Huili, 2009. "The martingale problem for a class of stable-like processes," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1144-1167, April.
    14. Cho, Soobin & Kim, Panki, 2021. "Estimates on transition densities of subordinators with jumping density decaying in mixed polynomial orders," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 229-279.
    15. Grzywny, Tomasz & Kwaśnicki, Mateusz, 2018. "Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 1-38.
    16. Masaki Wada, 2019. "Ergodic-Type Limit Theorem for Fundamental Solutions of Critical Schrödinger Operators," Journal of Theoretical Probability, Springer, vol. 32(1), pages 447-459, March.
    17. Farouk Mselmi, 2022. "Generalized linear model for subordinated Lévy processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 772-801, June.
    18. Chen, Zhen-Qing & Peng, Jun, 2018. "Markov processes with darning and their approximations," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3030-3053.
    19. Fangjun Xu, 2013. "Regularity of Harmonic Functions for Some Markov Chains with Unbounded Range," Journal of Theoretical Probability, Springer, vol. 26(2), pages 541-556, June.
    20. Peng Jin, 2021. "Uniqueness in Law for Stable-Like Processes of Variable Order," Journal of Theoretical Probability, Springer, vol. 34(2), pages 522-552, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:3:p:764-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.