IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i1p123-153.html
   My bibliography  Save this article

Functional inequalities for nonlocal Dirichlet forms with finite range jumps or large jumps

Author

Listed:
  • Chen, Xin
  • Wang, Jian

Abstract

The paper is a continuation of our paper, Wang and Wang (2013) [13], Chen and Wang [4], and it studies functional inequalities for non-local Dirichlet forms with finite range jumps or large jumps. Let α∈(0,2) and μV(dx)=CVe−V(x)dx be a probability measure. We present explicit and sharp criteria for the Poincaré inequality and the super Poincaré inequality of the following non-local Dirichlet form with finite range jump Eα,V(f,f)≔12∬{|x−y|⩽1}(f(x)−f(y))2|x−y|d+αdyμV(dx); on the other hand, we give sharp criteria for the Poincaré inequality of the non-local Dirichlet form with large jump as follows Dα,V(f,f)≔12∬{|x−y|>1}(f(x)−f(y))2|x−y|d+αdyμV(dx), and also derive that the super Poincaré inequality does not hold for Dα,V. To obtain these results above, some new approaches and ideas completely different from Wang and Wang (2013), Chen and Wang (0000) are required, e.g. the local Poincaré inequality for Eα,V and Dα,V, and the Lyapunov condition for Eα,V. In particular, the results about Eα,V show that the probability measure fulfilling the Poincaré inequality and the super Poincaré inequality for non-local Dirichlet form with finite range jump and that for local Dirichlet form enjoy some similar properties; on the other hand, the assertions for Dα,V indicate that even if functional inequalities for non-local Dirichlet form heavily depend on the density of large jump in the associated Lévy measure, the corresponding small jump plays an important role for the local super Poincaré inequality, which is inevitable to derive the super Poincaré inequality.

Suggested Citation

  • Chen, Xin & Wang, Jian, 2014. "Functional inequalities for nonlocal Dirichlet forms with finite range jumps or large jumps," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 123-153.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:123-153
    DOI: 10.1016/j.spa.2013.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913001889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhen-Qing & Kumagai, Takashi, 2003. "Heat kernel estimates for stable-like processes on d-sets," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 27-62, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Chen & Jian Wang, 2017. "Weighted Poincaré Inequalities for Non-local Dirichlet Forms," Journal of Theoretical Probability, Springer, vol. 30(2), pages 452-489, June.
    2. Jian Wang, 2019. "Compactness and Density Estimates for Weighted Fractional Heat Semigroups," Journal of Theoretical Probability, Springer, vol. 32(4), pages 2066-2087, December.
    3. Chen, Zhen-Qing & Wang, Jian, 2014. "Ergodicity for time-changed symmetric stable processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2799-2823.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng-Yu Wang & Jian Wang, 2015. "Functional Inequalities for Stable-Like Dirichlet Forms," Journal of Theoretical Probability, Springer, vol. 28(2), pages 423-448, June.
    2. Haruna Okamura & Toshihiro Uemura, 2021. "On Symmetric Stable-Type Processes with Degenerate/Singular Lévy Densities," Journal of Theoretical Probability, Springer, vol. 34(2), pages 809-826, June.
    3. Wang, Linlin & Xie, Longjie & Zhang, Xicheng, 2015. "Derivative formulae for SDEs driven by multiplicative α-stable-like processes," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 867-885.
    4. Chen, Xin & Chen, Zhen-Qing & Wang, Jian, 2020. "Heat kernel for non-local operators with variable order," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3574-3647.
    5. Kaleta, Kamil & Pietruska-Pałuba, Katarzyna, 2018. "Lifschitz singularity for subordinate Brownian motions in presence of the Poissonian potential on the Sierpiński gasket," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3897-3939.
    6. Jacob, Niels & Potrykus, Alexander & Wu, Jiang-Lun, 2010. "Solving a non-linear stochastic pseudo-differential equation of Burgers type," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2447-2467, December.
    7. Böttcher, Björn & Schilling, René L. & Wang, Jian, 2011. "Constructions of coupling processes for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1201-1216, June.
    8. Kim, Kyung-Youn & Wang, Lidan, 2022. "Heat kernel bounds for a large class of Markov process with singular jump," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 165-203.
    9. Renming Song, 2006. "Estimates on the Transition Densities of Girsanov Transforms of Symmetric Stable Processes," Journal of Theoretical Probability, Springer, vol. 19(2), pages 487-507, June.
    10. Bass, Richard F. & Tang, Huili, 2009. "The martingale problem for a class of stable-like processes," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1144-1167, April.
    11. Cho, Soobin & Kim, Panki, 2021. "Estimates on transition densities of subordinators with jumping density decaying in mixed polynomial orders," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 229-279.
    12. Masaki Wada, 2019. "Ergodic-Type Limit Theorem for Fundamental Solutions of Critical Schrödinger Operators," Journal of Theoretical Probability, Springer, vol. 32(1), pages 447-459, March.
    13. Chen, Zhen-Qing & Peng, Jun, 2018. "Markov processes with darning and their approximations," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3030-3053.
    14. Fangjun Xu, 2013. "Regularity of Harmonic Functions for Some Markov Chains with Unbounded Range," Journal of Theoretical Probability, Springer, vol. 26(2), pages 541-556, June.
    15. Peng Jin, 2021. "Uniqueness in Law for Stable-Like Processes of Variable Order," Journal of Theoretical Probability, Springer, vol. 34(2), pages 522-552, June.
    16. Kim, Panki, 2006. "Weak convergence of censored and reflected stable processes," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1792-1814, December.
    17. Wang, Jian, 2011. "Harnack inequalities for Ornstein-Uhlenbeck processes driven by Lévy processes," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1436-1444, September.
    18. Weidner, Marvin, 2023. "Markov chain approximations for nonsymmetric processes," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 238-281.
    19. Paweł Sztonyk, 2010. "Estimates of Tempered Stable Densities," Journal of Theoretical Probability, Springer, vol. 23(1), pages 127-147, March.
    20. Sztonyk, Pawel, 2011. "Transition density estimates for jump Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1245-1265, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:123-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.