IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i12p4054-4095.html
   My bibliography  Save this article

Quasi-stationary distributions and Yaglom limits of self-similar Markov processes

Author

Listed:
  • Haas, Bénédicte
  • Rivero, Víctor

Abstract

We discuss the existence and characterization of quasi-stationary distributions and Yaglom limits of self-similar Markov processes that reach 0 in finite time. By Yaglom limit, we mean the existence of a deterministic function g and a non-trivial probability measure ν such that the process rescaled by g and conditioned on non-extinction converges in distribution towards ν. We will see that a Yaglom limit exists if and only if the extinction time at 0 of the process is in the domain of attraction of an extreme law and we will then treat separately three cases, according to whether the extinction time is in the domain of attraction of a Gumbel, Weibull or Fréchet law. In each of these cases, necessary and sufficient conditions on the parameters of the underlying Lévy process are given for the extinction time to be in the required domain of attraction. The limit of the process conditioned to be positive is then characterized by a multiplicative equation which is connected to a factorization of the exponential distribution in the Gumbel case, a factorization of a Beta distribution in the Weibull case and a factorization of a Pareto distribution in the Fréchet case.

Suggested Citation

  • Haas, Bénédicte & Rivero, Víctor, 2012. "Quasi-stationary distributions and Yaglom limits of self-similar Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 4054-4095.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:4054-4095
    DOI: 10.1016/j.spa.2012.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geluk, J. L., 1996. "On the domain of attraction of exp(-exp(-x))," Statistics & Probability Letters, Elsevier, vol. 31(2), pages 91-95, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zbigniew Palmowski & Maria Vlasiou, 2020. "Speed of convergence to the quasi-stationary distribution for Lévy input fluid queues," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 153-167, October.
    2. Arista, Jonas & Rivero, Víctor, 2023. "Implicit renewal theory for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 262-287.
    3. Castro, Matheus M. & Lamb, Jeroen S.W. & Olicón-Méndez, Guillermo & Rasmussen, Martin, 2024. "Existence and uniqueness of quasi-stationary and quasi-ergodic measures for absorbing Markov chains: A Banach lattice approach," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    4. Bertoin, Jean, 2019. "Ergodic aspects of some Ornstein–Uhlenbeck type processes related to Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1443-1454.
    5. Kyprianou, Andreas E. & Rivero, Victor & Şengül, Batı, 2017. "Conditioning subordinators embedded in Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1234-1254.
    6. Leżaj, Łukasz, 2024. "Non-symmetric stable processes: Dirichlet heat kernel, Martin kernel and Yaglom limit," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    7. Czarna, Irmina & Palmowski, Zbigniew, 2017. "Parisian quasi-stationary distributions for asymmetric Lévy processes," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 75-84.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:4054-4095. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.