IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i6p1266-1289.html
   My bibliography  Save this article

The Gapeev-Kühn stochastic game driven by a spectrally positive Lévy process

Author

Listed:
  • Baurdoux, E.J.
  • Kyprianou, A.E.
  • Pardo, J.C.

Abstract

In Gapeev and Kühn (2005) [8], the Dynkin game corresponding to perpetual convertible bonds was considered, when driven by a Brownian motion and a compound Poisson process with exponential jumps. We consider the same stochastic game but driven by a spectrally positive Lévy process. We establish a complete solution to the game indicating four principle parameter regimes as well as characterizing the occurrence of continuous and smooth fit. In Gapeev and Kühn (2005) [8], the method of proof was mainly based on solving a free boundary value problem. In this paper, we instead use fluctuation theory and an auxiliary optimal stopping problem to find a solution to the game.

Suggested Citation

  • Baurdoux, E.J. & Kyprianou, A.E. & Pardo, J.C., 2011. "The Gapeev-Kühn stochastic game driven by a spectrally positive Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1266-1289, June.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:6:p:1266-1289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(11)00041-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Alili & A. E. Kyprianou, 2005. "Some remarks on first passage of Levy processes, the American put and pasting principles," Papers math/0508487, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Egami, Masahiko & Leung, Tim & Yamazaki, Kazutoshi, 2013. "Default swap games driven by spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 347-384.
    2. Gapeev, Pavel V. & Rodosthenous, Neofytos, 2016. "Perpetual American options in diffusion-type models with running maxima and drawdowns," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2038-2061.
    3. Hernández-Hernández, Daniel & Yamazaki, Kazutoshi, 2015. "Games of singular control and stopping driven by spectrally one-sided Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 1-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    2. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    3. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    4. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    5. Long, Mingsi & Zhang, Hongzhong, 2019. "On the optimality of threshold type strategies in single and recursive optimal stopping under Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2821-2849.
    6. Erhan Bayraktar, 2009. "On the perpetual American put options for level dependent volatility models with jumps," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 335-341.
    7. Kwaśnicki, Mateusz & Małecki, Jacek & Ryznar, Michał, 2013. "First passage times for subordinate Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1820-1850.
    8. Jukka Lempa, 2008. "On infinite horizon optimal stopping of general random walk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 257-268, April.
    9. Çağlar, M. & Kyprianou, A. & Vardar-Acar, C., 2022. "An optimal stopping problem for spectrally negative Markov additive processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1109-1138.
    10. Tine Compernolle & Kuno J. M. Huisman & Peter M. Kort & Maria Lavrutich & Cláudia Nunes & Jacco J. J. Thijssen, 2021. "Investment Decisions with Two-Factor Uncertainty," JRFM, MDPI, vol. 14(11), pages 1-17, November.
    11. Luis H. R. Alvarez & Teppo A. Rakkolainen, 2006. "A Class of Solvable Optimal Stopping Problems of Spectrally Negative Jump Diffusions," Discussion Papers 9, Aboa Centre for Economics.
    12. Dai, Darong & Shen, Kunrong, 2012. "A new stationary game equilibrium induced by stochastic group evolution and rational Individual choice," MPRA Paper 40133, University Library of Munich, Germany.
    13. Tim Siu-Tang Leung & Kazutoshi Yamazaki, 2010. "American Step-Up and Step-Down Default Swaps under Levy Models," Papers 1012.3234, arXiv.org, revised Sep 2012.
    14. Shi, Zhan, 2019. "Time-varying ambiguity, credit spreads, and the levered equity premium," Journal of Financial Economics, Elsevier, vol. 134(3), pages 617-646.
    15. Masahiko Egami & Kazutoshi Yamazaki, 2010. "Solving Optimal Dividend Problems via Phase-Type Fitting Approximation of Scale Functions," Discussion papers e-10-011, Graduate School of Economics Project Center, Kyoto University.
    16. Jonas Al-Hadad & Zbigniew Palmowski, 2020. "Perpetual American options with asset-dependent discounting," Papers 2007.09419, arXiv.org, revised Jan 2021.
    17. Dai, Darong, 2011. "Time as an Endogenous Random Variable Smoothly Embedded into Preference Manifold," MPRA Paper 40182, University Library of Munich, Germany.
    18. Gapeev, Pavel V., 2006. "Perpetual barrier options in jump-diffusion models," SFB 649 Discussion Papers 2006-058, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. repec:hum:wpaper:sfb649dp2006-058 is not listed on IDEAS
    20. Curdin Ott, 2014. "Bottleneck options," Finance and Stochastics, Springer, vol. 18(4), pages 845-872, October.
    21. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:6:p:1266-1289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.