IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i3p630-656.html
   My bibliography  Save this article

Multiscale diffusion approximations for stochastic networks in heavy traffic

Author

Listed:
  • Budhiraja, Amarjit
  • Liu, Xin

Abstract

Stochastic networks with time varying arrival and service rates and routing structure are studied. Time variations are governed by, in addition to the state of the system, two independent finite state Markov processes X and Y. The transition times of X are significantly smaller than typical inter-arrival and processing times whereas the reverse is true for the Markov process Y. By introducing a suitable scaling parameter one can model such a system using a hierarchy of time scales. Diffusion approximations for such multiscale systems are established under a suitable heavy traffic condition. In particular, it is shown that, under certain conditions, properly normalized buffer content processes converge weakly to a reflected diffusion. The drift and diffusion coefficients of this limit model are functions of the state process, the invariant distribution of X, and a finite state Markov process which is independent of the driving Brownian motion.

Suggested Citation

  • Budhiraja, Amarjit & Liu, Xin, 2011. "Multiscale diffusion approximations for stochastic networks in heavy traffic," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 630-656, March.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:3:p:630-656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00258-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin I. Reiman, 1984. "Open Queueing Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 9(3), pages 441-458, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amarjit Budhiraja & Xin Liu, 2012. "Stability of Constrained Markov-Modulated Diffusions," Mathematics of Operations Research, INFORMS, vol. 37(4), pages 626-653, November.
    2. Li, Ming, 2020. "Multi-fractional generalized Cauchy process and its application to teletraffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Dong & Elad Yom-Tov & Galit B. Yom-Tov, 2019. "The Impact of Delay Announcements on Hospital Network Coordination and Waiting Times," Management Science, INFORMS, vol. 67(5), pages 1969-1994, May.
    2. Minkevicius, Saulius & Steisunas, Stasys, 2003. "A law of the iterated logarithm for global values of waiting time in multiphase queues," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 359-371, February.
    3. A. B. Dieker & S. Ghosh & M. S. Squillante, 2017. "Optimal Resource Capacity Management for Stochastic Networks," Operations Research, INFORMS, vol. 65(1), pages 221-241, February.
    4. Josh Reed & Yair Shaki, 2015. "A Fair Policy for the G / GI / N Queue with Multiple Server Pools," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 558-595, March.
    5. Saulius Minkevičius & Igor Katin & Joana Katina & Irina Vinogradova-Zinkevič, 2021. "On Little’s Formula in Multiphase Queues," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    6. Shaler Stidham, 2002. "Analysis, Design, and Control of Queueing Systems," Operations Research, INFORMS, vol. 50(1), pages 197-216, February.
    7. Amarjit Budhiraja & Chihoon Lee, 2009. "Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 45-56, February.
    8. Budhiraja, Amarjit & Lee, Chihoon, 2007. "Long time asymptotics for constrained diffusions in polyhedral domains," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1014-1036, August.
    9. B. D. Sivazlian & K. H. Wang, 1990. "Diffusion approximation to the G/G/R machine repair problem with warm standby spares," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(5), pages 753-772, October.
    10. Zhen Xu & Jiheng Zhang & Rachel Q. Zhang, 2019. "Instantaneous Control of Brownian Motion with a Positive Lead Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 943-965, August.
    11. Maglaras, Constantinos & Van Mieghem, Jan A., 2005. "Queueing systems with leadtime constraints: A fluid-model approach for admission and sequencing control," European Journal of Operational Research, Elsevier, vol. 167(1), pages 179-207, November.
    12. David M. Markowitz & Martin I. Reiman & Lawrence M. Wein, 2000. "The Stochastic Economic Lot Scheduling Problem: Heavy Traffic Analysis of Dynamic Cyclic Policies," Operations Research, INFORMS, vol. 48(1), pages 136-154, February.
    13. Ward Whitt, 2001. "The Reflection Map with Discontinuities," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 447-484, August.
    14. Ramasubramanian, S., 2006. "An insurance network: Nash equilibrium," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 374-390, April.
    15. Hong Chen & Xinyang Shen & David D. Yao, 2002. "Brownian Approximations of Multiclass Open-Queueing Networks," Operations Research, INFORMS, vol. 50(6), pages 1032-1049, December.
    16. I. Venkat Appal Raju & S. Ramasubramanian, 2016. "Risk Diversifying Treaty Between Two Companies with Only One in Insurance Business," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 183-214, November.
    17. Mor Armony & Constantinos Maglaras, 2004. "On Customer Contact Centers with a Call-Back Option: Customer Decisions, Routing Rules, and System Design," Operations Research, INFORMS, vol. 52(2), pages 271-292, April.
    18. Sabri Çelik & Costis Maglaras, 2008. "Dynamic Pricing and Lead-Time Quotation for a Multiclass Make-to-Order Queue," Management Science, INFORMS, vol. 54(6), pages 1132-1146, June.
    19. Saulius Minkevičius & Edvinas Greičius, 2019. "Heavy Traffic Limits for the Extreme Waiting Time in Multi-phase Queueing Systems," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 109-124, March.
    20. Amarjit Budhiraja & Jiang Chen & Sylvain Rubenthaler, 2014. "A Numerical Scheme for Invariant Distributions of Constrained Diffusions," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 262-289, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:3:p:630-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.