IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i10p3173-3210.html
   My bibliography  Save this article

Maximum likelihood drift estimation for multiscale diffusions

Author

Listed:
  • Papavasiliou, A.
  • Pavliotis, G.A.
  • Stuart, A.M.

Abstract

We study the problem of parameter estimation using maximum likelihood for fast/slow systems of stochastic differential equations. Our aim is to shed light on the problem of model/data mismatch at small scales. We consider two classes of fast/slow problems for which a closed coarse-grained equation for the slow variables can be rigorously derived, which we refer to as averaging and homogenization problems. We ask whether, given data from the slow variable in the fast/slow system, we can correctly estimate parameters in the drift of the coarse-grained equation for the slow variable, using maximum likelihood. We show that, whereas the maximum likelihood estimator is asymptotically unbiased for the averaging problem, for the homogenization problem maximum likelihood fails unless we subsample the data at an appropriate rate. An explicit formula for the asymptotic error in the log-likelihood function is presented. Our theory is applied to two simple examples from molecular dynamics.

Suggested Citation

  • Papavasiliou, A. & Pavliotis, G.A. & Stuart, A.M., 2009. "Maximum likelihood drift estimation for multiscale diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3173-3210, October.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3173-3210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00090-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    2. J. H. Van Zanten, 2001. "A Note on Consistent Estimation of Multivariate Parameters in Ergodic Diffusion Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(4), pages 617-623, December.
    3. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Azencott & Peng Ren & Ilya Timofeyev, 2020. "Realised volatility and parametric estimation of Heston SDEs," Finance and Stochastics, Springer, vol. 24(3), pages 723-755, July.
    2. Robert Azencott & Peng Ren & Ilya Timofeyev, 2017. "Realized volatility and parametric estimation of Heston SDEs," Papers 1706.04566, arXiv.org, revised Mar 2020.
    3. Konstantinos Spiliopoulos & Alexandra Chronopoulou, 2013. "Maximum likelihood estimation for small noise multiscale diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 237-266, October.
    4. Jiatu Cai & Masaaki Fukasawa, 2016. "Asymptotic replication with modified volatility under small transaction costs," Finance and Stochastics, Springer, vol. 20(2), pages 381-431, April.
    5. Gailus, Siragan & Spiliopoulos, Konstantinos, 2017. "Statistical inference for perturbed multiscale dynamical systems," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 419-448.
    6. Jiatu Cai & Masaaki Fukasawa, 2014. "Asymptotic replication with modified volatility under small transaction costs," Papers 1408.5677, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    2. Seifoddini , Jalal & Rahnamay Roodposhti , Fraydoon & Nikoomaram , Hashem, 2015. "Parametric Estimates of High Frequency Market Microstructure Noise as an Unsystematic Risk," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 10(4), pages 29-50, October.
    3. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
    4. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    5. Misaki, Hiroumi & Kunitomo, Naoto, 2015. "On robust properties of the SIML estimation of volatility under micro-market noise and random sampling," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 265-281.
    6. Cecilia Mancini, 2012. "Measuring the relevance of the microstructure noise in financial data," Working Papers - Mathematical Economics 2012-09, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    7. Nolte, Ingmar & Voev, Valeri, 2007. "Estimating high-frequency based (co-) variances: A unified approach," CoFE Discussion Papers 07/07, University of Konstanz, Center of Finance and Econometrics (CoFE).
    8. Marine Carrasco & Rachidi Kotchoni, 2015. "Adaptive Realized Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 757-797.
    9. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    10. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    11. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    12. repec:dau:papers:123456789/4598 is not listed on IDEAS
    13. Shirley J. Huang & Qianqiu Liu & Jun Yu, 2007. "Realized Daily Variance of S&P 500 Cash Index: A Revaluation of Stylized Facts," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 33-56, May.
    14. Qianqiu Liu, 2009. "On portfolio optimization: How and when do we benefit from high-frequency data?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 560-582.
    15. Nikolaus Hautsch & Mark Podolskij, 2013. "Preaveraging-Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 165-183, April.
    16. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    17. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    18. Andersen, Torben G. & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2017. "Volatility, information feedback and market microstructure noise: A tale of two regimes," CFS Working Paper Series 569, Center for Financial Studies (CFS).
    19. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    20. Hiroumi Misaki & Naoto Kunitomo, 2013. "On Robust Properties of the SIML Estimation of Volatility under Micro-market noise and Random Sampling," CIRJE F-Series CIRJE-F-892, CIRJE, Faculty of Economics, University of Tokyo.
    21. Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3173-3210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.